Preprints
2024+, “Canonical Correlation Analysis as Reduced Rank Regression in High Dimensions”, C.Donnat, E.Tuzhilina
2024+, “Weighted Low Rank Matrix Approximation, Acceleration and Applications”, E.Tuzhilina, T.Hastie
Journal Papers
2024, “Statistical curve models for inferring 3D chromatin architecture”, E.Tuzhilina, T.Hastie, M.Segal, The Annals of Applies Statistics
2023, “Smooth multi-period forecasting with application to prediction of COVID-19 cases”, E.Tuzhilina, T.Hastie, D.McDonald, J.Tay, R.Tibshirani, Journal of Journal of Computational and Graphical Statistics
2022, “Principal Component Analysis”, M.Greenacre, P.Groenen, T.Hastie, A.D'Enza, A.Markos, E.Tuzhilina, Nature Reviews Methods Primers
2021, “An Open Repository of Real-Time COVID-19 Indicators”, A. Reinhart, L. Brooks, M. Jahja,
A.Rumack, J.Tang, W. Saeed, T.Arnold, A.Basu, J.Bien, A.Cabrera, A.Chin, E.Chua, B.Clark,
N.DeFries, J.Forlizzi, S.Gratzl, A.Green, G.Haff, R.Han, A.Hu, S.Hyun, A.Joshi, J.Kim, A.Kuznetsov,
W.Motte-Kerr, K.Lee, Y.Lee, Z.Lipton, M.Liu, L.Mackey, K.Mazaitis, D.McDonald, B.Narasimhan, N.Oliveira,
P.Patil, A.Perer, C.Politsch, S.Rajanala, D.Rucker, N.Shah, V.Shankar, J.Sharpnack, D.Shemetov, N.Simon,
V.Srivastava, S.Tan, R.Tibshirani, E.Tuzhilina, A.Nortwick, V.Ventura, L.Wasserman, J.Weiss, K.Williams,
R.Rosenfeld, R.Tibshirani, Proceedings of the National Academy of Sciences
2021, “Canonical Correlation Analysis in high dimensions with structured regularization”, E.Tuzhilina, L.Tozzi, T.Hastie, Statistical Modelling, SAGE
2021, “Relating whole-brain functional connectivity to self-reported negative emotion in a large sample of young adults using group regularized canonical correlation analysis”, L.Tozzi, E.Tuzhilina, M.Glasser, T.Hastie, L.Williams, NeuroImage, Vol. 237, pp. 118-137
2020, “Principal curve approaches for inferring 3D chromatin architecture”, E.Tuzhilina, T.Hastie, M.Segal, Biostatistics
2017, “Analyzing the Data Bank of Proteins Space Structures (PDB); A Geometrical Approach”, E.Vilkul, A.Ivanov, A.Mishchenko, F.Popelensky, A.Tuzhilin, K.Shaitan, Springer, Journal of mathematical Sciences, Vol. 225, number 4, pp. 555–564
2015, Addendum to the article “Critical analysis of amino acids and polypeptides geometry”, A.Ivanov, A.Mishchenko, A.Tuzhilin, Springer, Continuous and Distributed Systems: Theory and Applications, Vol. 2, pp. 29–74
2015, “A geometric approach to the analysis of the data bank of the three-dimensional structures of proteins (PDB)”, E.Vilkul, A.Ivanov, A.Mishchenko, F.Popelensky, A.Tuzhilin, K.Shaitan, Intuit, Pure and Applied Mathematics, Vol. 20, number 3, pp. 33-46
2015, “Conformations of swivel chain as a model of protein folding”, E.Vilkul, A.Ivanov, A.Tuzhilin, The Journal of Nanostructures, Mathematical physics and modeling, Vol. 13, number 2, pp. 25-42
2014, “Geometry of amino acids and polypeptides: the case of X-ray analysis”, E.Vilkul, A.Tuzhilin, The Journal of Nanostructures, Mathematical physics and modeling, Vol. 11, number 2, pp. 5-27
Patents
2019, “Data-driven automated selection of profiles of translation professionals for translation tasks”, A.Ukrainets, V.Gusakov, I.Smolnikov, E.Tuzhilina, patent number US20190065463
2018, “System and method of intellectual automatic selection of performers of translation”, A.Ukrainets, E.Tuzhilina, V.Gusakov, I.Smolnikov, patent number RU2667030
|