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Data

1 brain activations: magnetic resonance imaging obtained during a
gambling task designed to probe the brain circuits underlying reward

2 behavioral performance measures: self-reports assessing various
aspects of reward-related behaviors, depression symptoms and
positive as well as negative affective states

Question: is there any correlation between brain activity and behavioral
measures of performance during the cognitive tasks?
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Notations

X ∈ Rn×p – brain activations Y ∈ Rn×q – behavior test scores

Dimensions:

n = 153 participants

p = 90, 368 greyordinates

q = 9 scores
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Canonical Correlation Analysis

Goal: given two random vectors x = (x1, . . . , xp) and y = (y1, . . . , yq)

maximize cor(αT x , βT y) w.r.t. α ∈ Rp, β ∈ Rq

canonical coefficients α and β

canonical variates u = αT x and v = βT y

canonical correlation ρ(α, β) = cor(u, v)
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s.t. αTΣXXα = 1 and βTΣYY β = 1
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Correlation Coefficient

Correlation coefficient

ρ(α, β) =
αTΣXY β√

αTΣXXα
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βTΣYY β

CCA optimization problem:

maximize α̃TΣ
− 1

2
XXΣXY Σ

− 1
2

YY β̃ w.r.t. α̃ ∈ Rp and β̃ ∈ Rq

s.t. ‖α̃‖ = 1 and ‖β̃‖ = 1

Solution: via Singular Value Decomposition of Σ
− 1

2
XXΣXY Σ

− 1
2

YY

Problem: does not work for p > n!
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Regularization

Modified correlation coefficient

ρ(α, β) =
αTΣXY β√

αT (ΣXX + λ1I )α
√
βTΣYY β

RCCA optimization problem:

maximize αTΣXY β w.r.t. α ∈ Rp and β ∈ Rq

s.t. αTΣXXα = 1, βTΣYY β = 1 and ‖α‖ ≤ t1

Solution: via Singular Value Decomposition of (ΣXX + λI )−
1
2 ΣXY Σ

− 1
2

YY
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CCA package
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CCA package

CXX = p×p

CYY = q×q

CXY = p×q

Problem: CXX , CXY

are large for p � n
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Kernel trick

Goal: find a linear transformation such that RCCA for (X ,Y ) is
equivalent to RCCA for (R,Y ) and

V = p×n R = XV = n×p p×n = n×n

Solution:

1
X = UDV T = n×n n×n n×p

2 set R = XV = UD and solve RCCA problem for (R,Y ) =⇒
canonical coefficients αR , βR

3 apply inverse transformation αX = VαR and βX = βR
4 the variates stay the same vR = RαR = XαX = vX and uR = uX
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Brain data: RCCA best model

train test
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Brain data: RCCA best model

Visualization: plot canonical coefficients α for the optimal RCCA model
with λ1 = 0.001

(a) Cortical coefficients. (b) Subcortical coefficients.
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Brain regions

Motivation: brain features come in groups (aka brain regions). How to
take into account the group structure?

(a) Cortical parcellation (210 regions). (b) Subcortical parcellation (19 regions).
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Grouped structure

Notations:

K = 229 groups

pk = # features in group k

Xk – set of features in group k

αk – set of coefficients in group k

α = ( α1︸︷︷︸
p1

, . . . , αK︸︷︷︸
pK

) and X = ( X1︸︷︷︸
p1

, . . . , XK︸︷︷︸
pK

)
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GRCCA

GRCCA optimization problem:

maximize αTΣXY β w.r.t. α ∈ Rp and β ∈ Rq

s.t αTΣXXα = 1, βTΣYY β = 1,

K∑
k=1

‖αk − ᾱk‖2 ≤ t1 and
K∑

k=1

pk ᾱ
2
k ≤ s1

Modified correlation coefficient

ρ(α, β) =
αTΣXY β√

αT (ΣXX + λ1(I − C ) + µ1C )α
√
βTΣYY β

C =


11T

p1
0 . . . 0

0 11T

p2
. . . 0

. . . . . . . . . . . .

0 0 . . . 11T

pK
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GRCCA vs. RCCA

Lemma

GRCCA for (X ,Y ) is equivalent to RCCA for (X̃ ,Y ) where

X̃ =

(
X1 − X̄1,

√
p1λ1
µ1

X̄1, . . . ,XK − X̄K ,

√
pKλ1
µ1

X̄K

)

Can use Kernel trick!
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Brain data: GRCCA best model

train test
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Brain data: coefficient paths
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Brain data: coefficient paths
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Brain data: improved interpretability

Visualization: plot canonical coefficients α for GRCCA model with
λ1 = 1 and µ1 = 1

(a) Cortical coefficients. (b) Subcortical coefficients.
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Brain data: improved interpretability

Visualization: plot canonical coefficients α for GRCCA model with
λ1 = 10 and µ1 = 1

(a) Cortical coefficients. (b) Subcortical coefficients.
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Brain data: improved interpretability

Visualization: plot canonical coefficients α for GRCCA model with
optimal λ1 = 100 and µ1 = 1

(a) Cortical coefficients. (b) Subcortical coefficients.

Annotation of brain regions: [1] nucleus accumbens, [2] putamen, [3] thalamus, [4]
temporal lobe, [5] dorsolateral prefrontal cortex, [6] dorsomedial prefrontal cortex, [7]
posterior cingulate cortex, [8] precentral cortex.
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Thank you for your attention!
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