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MOTIVATION

Canonical correlation analysis (CCA) is a technique for measuring the association between
two multivariate data matrices. A regularized modification of canonical correlation analy-
sis (RCCA), imposing an `2 penalty on the CCA coefficients, is widely used in applica-
tions with high-dimensional data. One limitation of such regularization is that it ignores
any data structure, which can be ill-suited for some applications. Here we introduce a
novel approach that takes the underlying data structure into account. The proposed
group regularized canonical correlation analysis (GRCCA), is especially useful when the
variables are correlated in groups. We illustrate some computational strategies to avoid
excessive computations with regularized CCA in high dimensions. We demonstrate the
application of GRCCA method in our motivating application from neuroscience.

DATA

Brain activations X ∈ Rn×p: mag-
netic resonance imaging obtained during
a gambling task.

Behavioral scores Y ∈ Rn×q : self-reports
assessing various aspects of reward-
related behaviors.

n = 153 participants; p = 90, 368 greyordinates; q = 9 scores

CANONICAL CORRELATION ANALYSIS

Goal: given two random vectors
x = (x1, . . . , xp) and y = (y1, . . . , yq)

maximize cor(αTx, βT y) w.r.t. α, β

• canonical coefficients α and β

• canonical variates αTx and βT y

• canonical correlation cor(αTx, βT y)

Correlation coefficient:

ρ(α, β) = cor(αTx, βT y)
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CCA optimization problem:

maximize αT ΣXY β

w.r.t. α ∈ Rp, β ∈ Rq

s.t. αT ΣXXα = 1

βT ΣY Y β = 1

Solution: via SVD of Σ
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REGULARIZATION

Motivation: CCA doesn’t work for p > n

Modified correlation coefficient:

αT ΣXY β√
αT (ΣXX + λ1I)α

√
βT ΣY Y β

Shrinkage property:

maximize αT ΣXY β

w.r.t. α ∈ Rp, β ∈ Rq

s.t. αT ΣXXα = 1

βT ΣY Y β = 1

‖α‖ ≤ t1

Solution: via SVD of
(ΣXX + λ1I)−
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CCA LIBRARY

Problem:
ΣXX ∈ Rp×p

ΣXY ∈ Rp×q

are too large
when
p ≈ 90K

KERNEL TRICK

Idea: find a linear transformation

V = p×n R = XV = n×n

such that RCCA for (X,Y ) is equivalent
to RCCA for (R, Y )

Step-by-step procedure:

1. X = UDV T = n×n n×n n×p

2. set R = XV = UD and solve RCCA
problem for (R, Y ) =⇒ get αR, βR

3. recover coefficients αX = V αR

4. variates stay the same RαR = XαX

GROUP STRUCTURE

Motivation: brain features come in
groups (aka brain regions). How to take
into account the group structure?

Data structure:

• K = 229 groups

• pk = # features in group k

• αk – set of coefficients in group k

X = ( X1︸︷︷︸
p1

, ..., XK︸︷︷︸
pK

) α = ( α1︸︷︷︸
p1

, ..., αK︸︷︷︸
pK

)

Assumptions:

1. group homogeneity
αk ≈ ᾱk

2. differential group sparsity
ᾱk ≈ 0

CROSS VALIDATION RESULTS
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CANONICAL COEFFICIENTS

RCCA (λ1 = 0.001)

GRCCA (λ1 = 1, 10, 100 and µ1 = 1)

GROUP RCCA

GRCCA optimization problem:

maximize αT ΣXY β

w.r.t. α ∈ Rp, β ∈ Rq

s.t. αT ΣXXα = 1

βT ΣY Y β = 1

K∑
k=1

‖αk − ᾱk‖2 ≤ t1

K∑
k=1

pkᾱ
2
k ≤ s1

Modified correlation coefficient:

αT ΣXY β√
αT (ΣXX +K(λ1, µ1))α

√
βT ΣY Y β

where K(λ1, µ1) = λ1(I − C) + µ1C

and C =
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Lemma

GRCCA for (X,Y ) is equivalent to
RCCA for (X̃, Y ) where

X̃ = (X1 − X̄1, ...,XK − X̄K ,√
p1λ1
µ1

X̄1, ...,

√
pKλ1
µ1

X̄K)
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