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Abstract: Canonical correlation analysis (CCA) is a technique for measuring the association
between two multivariate data matrices. A regularized modification of canonical correlation analysis
(RCCA) which imposes an `2 penalty on the CCA coefficients is widely used in applications with
high-dimensional data. One limitation of such regularization is that it ignores any data structure,
treating all the features equally, which can be ill-suited for some applications. In this article we
introduce several approaches to regularizing CCA that take the underlying data structure into account.
In particular, the proposed group regularized canonical correlation analysis (GRCCA) is useful when
the variables are correlated in groups. We illustrate some computational strategies to avoid excessive
computations with regularized CCA in high dimensions. We demonstrate the application of these
methods in our motivating application from neuroscience, as well as in a small simulation example.
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1 Introduction

Canonical correlation analysis (CCA) is a classic method commonly used in statistics
for studying complex multivariate data. CCA was first introduced by Hotelling
(1936) as a tool for finding relationships between two sets of variables. It remains
relevant in many domains including, but not limited to, genetics (see, for example,
Waaijenborg et al., 2008; Parkhomenko et al., 2009; Cao et al., 2009) and
neuroscience (see, for example, Wang et al., 2020; Zhuang et al., 2020). In many
applications the number of available observations is significantly smaller than the
number of features under consideration, so some form of regularization is essential.
Numerous regularized CCA extensions have been proposed (see, for example, Lykou
and Whittaker, 2010; Hardoon and Shawe-Taylor, 2011; Witten and Tibshirani,
2009). The most popular existing approach, called Regularized CCA (RCCA),
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imposes an `2-penalty on the canonical coefficients (see, for example, Vinod, 1976;
Leurgans et al., 1993). Like any other standard regularization method based on the
`2 penalty, it has the property of treating all the coefficients equally and shrinking
them towards zero. Although RCCA is well suited to data with general structure,
in some applications the structure of the data can play an important role when
investigating the association between variables. In this article, we develop several
regularized extensions of CCA. These extensions were originally motivated by brain
imaging applications, but the scope of applications can readily be extended to other
fields.

The article is organized as follows. In Section 2, we introduce the necessary
background for both CCA and RCCA methods. In Section 3 we propose several
approaches to regularization that account for the underlying structure of the data.
In particular, in Section 4, we introduce partially regularized canonical correlation
analysis (PRCCA) that imposes an `2 penalty only on a subset of the features.
Although both RCCA and PRCCA problems have simple explicit solutions that
can be computed via singular value decomposition, they require us to work in terms
of sample covariance matrices. This can be infeasible when the number of features is
very large. In Sections 2.4 and 4.2, we cover the ‘kernel’ trick that allows to escape
excessive computations while conducting CCA with regularization. In Section 5, we
introduce group regularized CCA (GRCCA), a novel method that exploits group
structure in the data.

Since all the methods under consideration have similar structure, they can be
considered as special cases of CCA with a general regularization penalty discussed in
Sections 6. All the technical details and proofs for these methods are covered in the
supplemental material.

We illustrate the proposed methods on our motivating study example involving
functional brain imaging data in Section 3 as well as on a small simulation example
in Section 7. We conclude with a discussion, including some ideas for future work.

2 Canonical correlation analysis with regularization

2.1 Canonical correlation analysis

Consider two random vectors X ∈ Rp and Y ∈ Rq. The goal of CCA is to find a
linear combination of X variables and a linear combination of Y variables with
the maximum possible correlation. Typically, we find a sequence of such linear
combinations. Namely, for i = 1, . . . ,min(p,q) define a sequence of pairs of random
variables (Ui,Vi) as follows (see, for example, Härdle and Simar, 2007)

1. Random variables Ui and Vi are linear combinations of X and Y,
respectively, that is,

Ui = α>i X and Vi = β>i Y.
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2. Coefficient vectors αi ∈ Rp and βi ∈ Rq maximize the correlation

ρ(αi, βi) = cor(α>i X, β>i Y).

3. Pair (Ui,Vi) is uncorrelated with previous pairs, i.e

cor(Ui,Uj) = cor(Vi,Vj) = 0 for j < i.

The pair (Ui,Vi) is called i-th pair of canonical variates; the corresponding optimal
correlation value ρi = ρ(αi, βi) is called i-th canonical correlation.

Note that correlation coefficient ρ(α, β) can be rewritten as

ρCCA(α, β) =
α>6XYβ√

α>6XXα
√
β>6YYβ

, (2.1)

where 6XX, 6YY and 6XY refer to the covariance matrices cov(X), cov(Y) and
cov(X,Y), respectively. It is easy to restate maximization of ρCCA(α, β) w.r.t. α and β
in terms of a constrained optimization problem

maximize α>6XYβ w.r.t. α ∈ Rp and β ∈ Rq

subject to α>6XXα = 1 and β>6YYβ = 1. (2.2)

Thus, finding the i-th canonical pair is equivalent to solving the problem:

maximize α>i 6XYβi w.r.t. αi ∈ Rp and βi ∈ Rq

subject to α>i 6XXαi = 1 and β>i 6YYβi = 1

α>i 6XXαj = 0 and β>i 6YYβj = 0 for j < i.

One can show that the canonical variates can be found via a singular value

decomposition of the matrix 6
−

1
2

XX6XY6
−

1
2

YY , and that the canonical correlations
coincide with the singular values of this matrix (see, for example, Mardia et al.,
1979).

2.2 Dealing with high dimensions

In practice, we replace covariance matrices 6XX, 6YY and 6XY by the sample
covariance matrices 6̂XX, 6̂YY and 6̂XY. Specifically, suppose X ∈ Rn×p and Y ∈ Rn×q

refer to matrices of n observations for random vectors X and Y, respectively. Without
loss of generality, assume that the columns of X and Y are centred (mean 0), then

6̂XX = 1
nX>X, 6̂YY = 1

nY>Y and 6̂XY = 1
nX>Y.
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If the number of observations n is smaller than p and/or q, the corresponding

sample covariance matrices are singular and the inverses 6̂
−

1
2

XX and/or 6̂
−

1
2

YY do not
exist. Regularized canonical correlation analysis (RCCA) resolves this problem by
adding diagonal matrices to the sample covariance matrices of X and Y (see, for
example, Leurgans et al., 1993; Gonzalez et al., 2008):

6̂XX(λ1) = 6̂XX + λ1Ip and 6̂YY(λ2) = 6̂YY + λ2Iq. (2.3)

Here Ip refers to the p× p identity matrix. The modified correlation coefficient that
is maximized while seeking pairs of canonical variates is, hence,

ρRCCA(α, β; λ1, λ2) =
α>6̂XYβ√

α>(6̂XX + λ1I)α
√
β>(6̂YY + λ2I)β

. (2.4)

By analogy with CCA, it is easy to show that the RCCA variates can be found via
the singular value decomposition of the matrix (6̂XX + λ1I)−

1
2 6̂XY(6̂YY + λ2I)−

1
2 and

that RCCA modified correlations are equal to the singular values of this matrix.

2.3 Shrinkage property

Similar to ridge regression, regularization shrinks the CCA coefficients α and β
towards zero, where the penalty parameters λ1 and λ2 control the strength of the
shrinkage of α and β, respectively. This can be supported by the following reasoning.
As in the case of CCA, maximization of the modified correlation ρRCCA(α, β; λ1, λ2)
w.r.t. α and β can be restated as a constrained optimization problem

maximize α>6̂XYβ w.r.t. α ∈ Rp and β ∈ Rq

subject to α>(6̂XX + λ1I)α = 1 and β>(6̂YY + λ2I)β = 1.

Note that the constraints can be rewritten as

α>6̂XXα + λ1‖α‖
2 = 1 and β>6̂XXβ + λ1‖β‖

2 = 1,

where ‖ · ‖ refers to the vector Euclidean norm. Finally, one can interpret λ1 and λ2
as Lagrangian dual variables for constraints ‖α‖2 ≤ t1 and ‖β‖2 ≤ t2 which brings us
to the optimization problem

maximize α>6̂XYβ w.r.t. α ∈ Rp and β ∈ Rq

subject to α>6̂XXα = 1, ‖α‖2 ≤ t1 and β>6̂YYβ = 1, ‖β‖2 ≤ t2. (2.5)

One can show that for some appropriately chosen t1 and t2 this problem is equivalent
to maximizing objective (2.4). Moreover, increasing λ1 and λ2 is equivalent to
decreasing thresholds t1 and t2 which leads us to the shrinkage property. Finally,
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increasing λ1 and λ2 increases the denominator of (2.4) thereby shrinking the modified
correlation coefficient to zero as well.

2.4 RCCA kernel trick

In some applications we need to deal with a very high-dimensional feature space. For
instance, analysing functional magnetic resonance imaging (fMRI) data, where the
dimension refers to the number of brain regions (or voxels), the number of features
can reach hundreds of thousands. If one of p and q is very large it can be problematic
to store matrices 6̂XX and 6̂YY. In this section we illustrate a simple trick based on
the invariance of the RCCA problem under orthogonal transformations, that allows
one to handle high-dimensional data when computing the RCCA solution. The idea
to reduce a high dimensional CCA problem to a low-dimensional one via the kernel
trick was previously introduced by Kuss (2003) and Hardoon et al. (2005). Below
we demonstrate the practical application of this idea to the RCCA problem that we
subsequently use in the implementation.

For simplicity, we assume that regularization is imposed on the X part only, that
is, we assume q < n and set λ2 = 0. The same reasoning applies if we regularize Y part
as well. First we use the fact that any n× p matrix X with p� n can be decomposed
(e.g., via SVD) into a product X = RV>, where R ∈ Rn×n is a square matrix, and
V ∈ Rp×n is a matrix with orthonormal columns, that is, V>V = I.

Lemma 2.1. [RCCA kernel trick] The original RCCA problem stated for X and Y
can be reduced to solving the RCCA problem for R and Y. The resulting canonical
correlations and variates for these two problems coincide. The canonical coefficients
for the original problem can be recovered via the linear transformation αX = VαR.

See Supplement Section 1 for the proof. Note that for p� n the above trick allows
us to avoid manipulating large p× p and p× q covariance matrices 6̂XX and 6̂XY

and to operate in terms of smaller n× n and n× q matrices 6̂RR and 6̂RY. Of course,
exactly the same trick can be applied to the Y part if q� n.

2.5 Hyperparameter tuning

Before proceeding to our first example, let us discuss how one can tune the
hyperparemeters. There are two hyperparameters for RCCA, that is, λ1 and λ2. Let
us denote the vector of hyperparameters by θ. The values for these hyperparameters
can be chosen via cross-validation. Below we present the outline for hold-out
cross-validation; however, it can be naturally extended to the case of k-fold
cross-validation.

First we split all available observations into train (Xtrain,Ytrain) and validation
(Xval,Yval) sets. We use the former set to fit the model and compute canonical
coefficients α(θ) and β(θ). Further, we use the latter set to estimate the model
performance, that is, we calculate ρval(θ) = cor (Xvalα(θ),Yvalβ(θ)) . Note that here
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we utilize simple correlation instead of the modified correlation as a measure of
performance. We pick the values of the hyperparameters maximizing the validation
correlation, that is, θ∗ = argmaxθ (ρval(θ)) ,which can be done by means of grid search.

3 Example. Human Connectome data study

In this section we present an application of regularized CCA to data from a
neuroscience study: the Human Connectome Project for Disordered Emotional States
(HCP-DES) Tozzi et al. (2020). One aim of HCP-DES is to link the function of
macroscopic human brain circuits to self-reports of emotional well-being using
magnetic resonance imaging. Here, we focused on brain activations during a
Gambling task designed to probe the brain circuits underlying reward (described
in detail in Barch et al., 2013; Tozzi et al., 2020). We linked this neuroimaging
data with self-reports assessing various aspects of reward-related behaviours
(Behavioural Approach System/Behavioural Inhibition Scale (BIS/BAS), Carver and
White, 1994), depression symptoms (Mood and Anxiety Symptom Questionnaire
(MASQ), Wardenaar et al., 2010) and positive as well as negative affective states
(Positive and Negative Affect Schedule (PANAS), Watson et al., 1988). We selected
participants who had complete self-report and imaging data as well as no quality
control issues, for a total of 153 participants (94 females, 59 males, mean age
25.91, sd 4.85). For details on the preprocessing and subject-level modelling used
to derive brain activations in response to the Gambling task, see Section 6 of the
Supplement. We used for our analysis the activations for the monetary reward
compared to monetary loss during the task. For each subject, the activation at
each greyordinate (grey matter coordinate) in the brain was extracted, yielding a
matrix X of n = 153 rows (subjects) and p = 90 368 columns (greyordinates). The
self-report data consisted of 9 variables: drive, fun seeking, reward responsiveness
(from the BAS), total behavioural inhibition (from the BIS), distress, anhedonia,
anxious arousal (from the MASQ), positive and negative affective states (from the
PANAS). These were entered in a matrix Y of n = 153 rows (subjects) and q = 9
columns.

To test our structured methods, the 90 368 greyordinates were grouped into 229
regions depending on their functional and anatomical properties, corresponding to
the 210 regions of the Brainnetome atlas (Fan et al., 2016) with the addition of the 19
subcortical regions of the Desikan-Killiany Atlas (Desikan et al., 2006). The resulting
brain regions are presented in Figure 1.

3.1 RCCA results

We start with a relatively simple model averaging activation inside each brain
region and using the averaged values as features. Thus X becomes of dimension
153× 229. To remove the effect of sex on the resulting correlation we adjusted
both activation and behavioural data for the binary sex variable by means of
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(a) Cortical parcellation. (b) Subcortical parcellation.

Figure 1 229 brain regions: 210 cortical regions of the Brainnetome atlas and 19 subcortical regions of the
Desikan-Killiany Atlas

simple linear regression (mean adjustment). Since the Y matrix is relatively small
we imposed no penalty on Y (λ2 = 0). To pick the hyperparameter λ1 we ran ten fold
cross-validation on the adjusted data pairs with the penalty factor varying over the
grid λ1 = 10−3,10−2, . . . ,104,105.

The resulting cross-validation curves represent the unpenalized correlation
between canonical variates (computed on the 9 folds of train set and one fold of
validation set) averaged across 10 folds (see Figure 2a). Note that although larger
λ1 shrinks the modified correlation ρRCCA towards zero, the unpenalized correlation
is not guaranteed to be monotonically decreasing in λ1. According to the plot, the
highest score is achieved for λ1 = 0.1 with the corresponding test correlation equal
to 0.148. Using the kernel trick we now run RCCA for the original activation data
(90 368 features adjusted for the sex effect). According to Figure 2b, the maximum
score is equal to 0.11 (λ1 = 0.001). In general, to compare two models and check that
the cross-validation score does not reflect spurious findings we should validate the
performance of the models on an independent test set. However, the small sample size
of the data (only 153 observations) makes the test correlation estimates unreliable.
We use nested cross-validation (NCV) to overcome the problem of overfitting to the
dataset that we use for tuning. Specifically, we split the data in 11 folds. Each of the
11 folds is given an opportunity to be used as an independent test set, while all other
10 folds folds are used to tune the hyperparameters via ten fold cross-validation.
Therefore, we report 11 cross-validation scores along with 11 test scores, and we
present the average for both as well as 1SE confidence intervals (see Figure 7).
According to the NCV scores, the cross-validation procedure for the full RCCA
model discovered significant correlation (independent test set correlation averaged
across 11 folds is 0.105). However, the correlation value obtained by the smaller
mean RCCA model was way too optimistic (average test score is 0.044 with wide
error bands).
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Figure 2 The cross-validation curves obtained via RCCA with ten fold cross-validation for the Human
Connectome dataset. Left panel: (unpenalized) correlation between train canonical variates. Right panel:
(unpenalized) correlation between validation canonical variates

It is worth noting the computational speed of the proposed method. Unlike the
rcc() function from the popular CCA R package (see Gonzalez et al. (2008)), which
is not able to handle such a large number of features (≈ 90K for the X side), our
implementation of RCCA with the kernel trick completes the calculations in 20
seconds.

3.2 Interpretability of canonical coefficients

In this section we visualize the RCCA coefficients α corresponding to the
hyperparameters chosen by cross-validation. Recall that the original X features
represent the brain activation detected at each brain greyordinate, so we can map
the resulting RCCA coefficients back to the brain surface (see Figure 3). There is an
apparent trade-off between the interpretability and flexibility of the model. Namely,
although full data RCCA is more flexibile, there is quite a lot of variation in the
resulting canonical coefficients. This makes the corresponding brain image harder to
interpret. On the other hand, the reduced model allows us to identify the brain regions
that have the highest impact on the resulting correlation. However, it loses in terms
of flexibility (and, potentially, performance). In what follows, we aim to develop the
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(a) Cortical coefficients, averaged data. (b) Subcortical coefficients, averaged data.

(c) Cortical coefficients, original data. (d) Subcortical coefficients, original data

Figure 3 RCCA coefficients computed for the averaged data (229 features) with hyperparameter λ1 = 0.1
chosen by cross-validation and for the original data (90 368 features) with hyperparameter λ1 = 10 chosen
by cross-validation

model that links these two extremes enabling us to control the interpretability vs.
flexibility trade-off.

4 CCA with partial regularization

4.1 Penalizing a subset of canonical coefficients

Suppose you are interested in the influence of a specific brain region on the resulting
CCA correlation, however, you do not want to completely eliminate the remaining
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brain regions from the data. Recall that the inequality constraints in the RCCA
optimization problem (2.5) control the deviation of all canonical coefficients from
zero. PRCCA is a modification of RCCA that allows one to shrink only a subset
of the CCA coefficients leaving the complement unpenalized. The proposed PRCCA
method is a key building block for our final group RCCA approach and also admits
some independent interesting applications.

Suppose that both α and β are split into two parts

α = ( α1
α2 ) where α1 ∈ Rp1 and α2 ∈ Rp2 with p1 + p2 = p,

β =
(
β1
β2

)
where β1 ∈ Rq1 and β2 ∈ Rq2 with q1 + q2 = q.

Replacing the constraints ‖α‖2 ≤ t1 and ‖β‖2 ≤ t2 in the optimization problem (2.5)
by ‖α1‖

2
≤ t1 and ‖β1‖

2
≤ t2, respectively, we get the PRCCA optimization problem

maximize α>6̂XYβ w.r.t. α ∈ Rp and β ∈ Rq

subject to α>6̂XXα = 1, ‖α1‖
2
≤ t1 and β>6̂YYβ = 1, ‖β1‖

2
≤ t2. (4.1)

Re-expressing the constraints for α and β in terms of dual variables, we get

α>6̂XXα + λ1‖α1‖
2 = α>

(
6̂XX + λ1

(
Ip1 0
0 0

))
α

β>6̂YYβ + λ2‖β1‖
2 = β>

(
6̂YY + λ2

(
Iq1 0
0 0

))
β.

This leads us to the PRCCA modification of the correlation coefficient as follows:

ρPRCCA(α, β; λ1, λ2) =
α>6̂XYβ√

α>(6̂XX + λ1

(
Ip1 0
0 0

)
)α
√
β>(6̂YY + λ2

(
Iq1 0
0 0

)
)β
. (4.2)

As usual, PRCCA variates and coefficients obtained by maximizing (4.2) can be found

by means of SVD of the matrix
(
6̂XX + λ1

(
Ip1 0
0 0

))− 1
2
6̂XY

(
6̂YY + λ2

(
Iq1 0
0 0

))− 1
2
.

4.2 PRCCA kernel trick

In this section we extend the kernel trick to the PRCCA problem set up. Note
that, because I was replaced by block matrix

(
I 0
0 0

)
in the denominator of the

modified correlation coefficient (2.4), the PRCCA problem does not preserve the
property of invariance under orthogonal transformations. Thus, the mathematics
used in Section 2.4 does not work anymore. There are two main ingredients for the
PRCCA kernel trick. First, if the feature matrix consists of two orthogonal blocks,
then the kernel trick can be applied to each block independently. Second, there
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Canonical correlation analysis in high dimensions with structured regularization 11

exists a non-orthogonal transformation of the feature matrix making the two blocks
orthogonal to each other, while resulting in an equivalent PRCCA problem.

We again assume for simplicity that the regularization penalty is imposed on
the X part only. Suppose X =

( X1
X2

)
, where random vectors X1 ∈ Rp1 and X2 ∈ Rp2

correspond to penalized coefficients part α1 and unpenalized part α2, respectively. Let
X1 ∈ Rn×p1 and X2 ∈ Rn×p2 represent the corresponding matrices of observations, so
X = (X1,X2). To make the PRCCA solution identifiable we require X2 to be tall and
full rank, that is, p2 < n and rank(X2) = p2. We can also assume that p1 � n.

As the first step we find a linear transformation A ∈ Rp×p such that matrix X
∼

=
XA = (X

∼

1,X
∼

2) ∈ Rn×p has orthogonal blocks X
∼

1 ∈ Rn×p1 and X
∼

2 ∈ Rn×p2 , that is,
X
∼
>

1 X
∼

2 = 0, and that preserves the second block, that is, X
∼

2 = X2. This can be easily
done by linear regression (see Supplement for details). This linear transformation
maps the original PRCCA problem to an equivalent one (equivariant in terms of the
coefficients and invariant in terms of the objective).

Note that the above transformation forces the sample covariance matrix 6̂X
∼

X
∼

to be block-diagonal with blocks 6̂X
∼

1X
∼

1
and 6̂X

∼

2X
∼

2
, which enables us to apply the

kernel trick to the first and the second block of X
∼

independently. Specifically, consider
the decomposition of X

∼

1, as in the RCCA kernel lemma, that is, X
∼

1 = R1V>1 where
V1 ∈ Rp1×n is a matrix with orthonormal columns and R1 ∈ Rn×n is some square
matrix. Then the following lemma holds.

Lemma 4.2. [PRCCA kernel trick] The original PRCCA problem stated for X and
Y can be reduced to solving the smaller PRCCA problem for R =

(
R1
X2

)
and Y.

The resulting canonical correlations and variates for these two problems coincide.
The canonical coefficients for the original problem can be recovered via the linear
transformation αX = A

(
V1 0
0 I

)
αR.

See Supplement Section 2 for the proof. Note that, according to the lemma,
instead of working with large matrices 6̂XX ∈ Rp×p and 6̂XY ∈ Rp×q we can operate
in terms of smaller matrices 6̂RR ∈ R(n+p2)×(n+p2) and 6̂RY ∈ R(n+p2)×q thereby avoiding
excessive computations.

4.3 Testing PRCCA on the Human Connectome data

First, we chose the brain region of interest that we aim to release from the
regularization penalty. To do so for each column of averaged activation data we
compute Cohen’s d, which measures the effect size for a one-sample t-test comparing
the population mean to zero, and pick the regions with at least a medium effect (d >
0.3). The resulting 26 regions demonstrate the largest activation during the Gambling
task. Then we run PRCCA on the averaged data imposing the penalty on all but these
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Figure 4 The cross-validation curves obtained via PRCCA with ten fold cross-validation for the Human
Connectome dataset. Left panel: (unpenalized) correlation between train canonical variates. Right panel:
(unpenalized) correlation between validation canonical variates

26 regions. We consider the same grid of values λ1 = 10−3,10−2, . . . ,104,105 and
choose the hyperparameter according to the maximum cross-validation score (see
Section 2.5 for the details). The highest validation correlation is equal to 0.073 and
is achieved when λ1 = 1 (see Figure 4). Figure 5 represents the canonical coefficients
computed for λ1 chosen by cross-validation. As expected, the coefficients for most
regions were shrunk to zero leaving only a few standing out. Again, it is the kernel
trick which enables running cross-validation for the extremely high-dimensional
feature matrix in just a few minutes. Although PRCCA does not perform well in
this application, it will play an important role in developing subsequent methods.

5 Canonical correlation analysis for grouped data

5.1 Handling data with a group structure

The main critique of applying standard RCCA approach to the fMRI data is that, in
fact, RCCA completely ignores the brain geometry treating all the features equally.
Recall that in the Human Connectome data the features representing particular
greyordinates are grouped into macro regions according to the function and anatomy.
The goal of the group regularized canonical correlation analysis (GRCCA) is to
incorporate this underlying data structure into the regularization penalty.
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(a) Cortical coefficients. (b) Subcortical coefficients.

Figure 5 PRCCA coefficients computed for the averaged data (229 features) with hyperparameter λ1 = 1
chosen by cross-validation

There are some group extensions of CCA based on elastic net and group lasso
penalizations suggested in the literature (see, for example, Chen et al., 2012; Lin
et al., 2013). Unlike the existing methods the proposed GRCCA approach does
not require an iterative algorithm and has a simple explicit solution. Equipped
with the kernel trick it also allows working with data in a very high-dimensional
feature space.

GRCCA solves the CCA problem under the following two natural assumptions.
First, we assume homogeneity of groups and expect that the features within each
group have approximately equal contribution to the canonical variates. In other
words, the corresponding CCA coefficients do not vary significantly inside each
group. Second, we assume the differentiating sparsity on a group level and expect
that the coefficients will be shrunk towards zero all together for some groups. In
terms of brain imaging applications these two assumptions mean that greyordinates
‘act in concert’ within each macro region and that some regions have a weaker effect
on the studied phenomenon.

To state the GRCCA optimization problem rigorously we need to introduce some
further notation. Suppose that the elements of random vectors X and Y are known
to come in K and L groups, respectively. For each k = 1, . . . ,K let pk be the number
of elements from X that belong to group k, so

∑K
k=1 pk = p, and let Xk ∈ Rpk be the

random vector that consists of these elements. Without loss of generality, we can
assume that X =

(
X1
...
XK

)
. Similarly, one can divide the CCA coefficients α into blocks

corresponding to different groups, that is, α =
(
α1
...
αK

)
. If ᾱk = 1>αk

pk
denotes the mean

of the CCA coefficients in group k, then the group homogeneity assumption implies
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that all values of αk do not deviate significantly from the mean value ᾱk, whereas,
the differentiating sparsity on a group level implies that the average deviation of
ᾱk from zero is small. This can be characterized by the following two constraints:∑K

k=1 ‖αk − 1ᾱk‖
2
≤ t1 and

∑K
k=1 pkᾱ

2
k ≤ s1. Note that these two equations can

be interpreted as bounds on within- and between- group variation, respectively.
One can derive similar constraints for β coefficients as well. Adding all the
constraints to the CCA optimization problem we end up with the GRCCA
optimization problem

maximize α>6̂XYβ w.r.t. α ∈ Rp and β ∈ Rq

subject to α>6̂XXα = 1,
K∑

k=1

‖αk − 1ᾱk‖
2
≤ t1,

K∑
k=1

pkᾱ
2
k ≤ s1

and β>6̂YYβ = 1,
L∑
`=1

‖β` − 1β̄`‖2 ≤ t2,

L∑
`=1

q`β̄2
` ≤ s2. (5.1)

Next, denote Cm = 11>

m ∈ Rm×m. Let CX = Cp1 ⊕ . . .⊕ CpK ∈ Rp×p refer to the
block diagonal matrix with blocks Cp1, . . . ,CpK . Thus, the constraints on α can
be rewritten in terms of a regularization penalty as

α>6̂XXα + λ1

K∑
k=1

‖αk − 1ᾱk‖
2 + µ1

K∑
k=1

pkᾱ
2
k =

α>6̂XXα + λ1

K∑
k=1

α>k
(
I − Cpk

)
αk + µ1

K∑
k=1

α>k Cpkαk =

α>
(
6̂XX + λ1(I − CX) + µ1CX

)
α = α>

(
6̂XX + KX(λ1, µ1)

)
α.

Here, KX(λ1, µ1) = λ1(I − CX) + µ1CX is the penalty matrix. The constraints for β can
be combined in a similar way leading to the GRCCA modified correlation coefficient

ρGRCCA(α, β; λ1, µ1, λ2, µ2) =
α>6̂XYβ√

α>(6̂XX + KX(λ1, µ1))α
√
β>(6̂YY + KY(λ2, µ2))β

.

Note that this correlation coefficient has similar structure to the RCCA coefficient
(2.4) and PRCCA coefficient (4.2), but now the covariance matrices in the
denominator are adjusted by block diagonal matrices KX(λ1, µ1) and KY(λ2, µ2).

Similar to RCCA and PRCCA, the explicit solution to the GRCCA problem can

be found via the SVD of matrix
(
6̂XX + KX(λ1, µ1)

)− 1
2 6̂XY

(
6̂YY + KY(λ2, µ2)

)− 1
2 ,

which can be problematic in high dimensions. It turns out that there is a simple linear
transformation that converts the GRCCA problem to an equivalent RCCA/PRCCA
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problem. In Supplement Sections 4 and 5 we give two ways: via the SVD of the
penalty matrix and via feature matrix extension. This link can be subsequently used
to establish the kernel trick for group-structured data thereby reducing computations
in high dimensions.

5.2 Link to the flexibility vs. performance trade-off

There are several important properties of the proposed penalty matrix explaining the
motivation for the GRCCA method. First, one can show that for KX(λ1, λ1) = λ1I, so
RCCA is the special case of GRCCA. Second, increasing λ1 restrains the variability
of coefficients within each brain region and, in limit, makes all the coefficients that
belong to the same brain region equal to each other (and equal to the region mean).
This is essentially equivalent to replacing features in each brain region by the average.
Therefore, when λ1→∞ the GRCCA problem becomes equivalent to the RCCA
problem solved for the reduced data (see Section 3.1 for the details). To sum up,
varying λ1 and µ1 allows us to approach the RCCA method conducted for either
full or reduced data thereby controlling the flexibility vs interpretability trade-off
described in Section 3.2.

5.3 GRCCA for the Human Connectome study

In this section, we apply the GRCCA method to the Human Connectome study
data grouping activation features according to the brain regions. We again adjusted
X and Y for the sex effect and ran ten fold cross-validation on the adjusted data
pair with the penalty factors varying in the grid λ1, µ1 = 10−3,10−2, . . . ,104,105

(see Section 2.5 for the details). The resulting cross-validation curves are presented
in Figure 6. According to the plot, the highest cross-validation score is attained
for λ1 = 100 and µ1 = 1 leading to the correlation of 0.296. To validate these
significant findings, we again run nested cross-validation (see Section 3.1). According
to Figure 7, the NCV average test set score is equal to 0.236. Thus, although slightly
optimistic (by a modest value of 0.06), the GRCCA cross-validation correlation
is not a spurious finding and is a significant improvement comparing to the
RCCA method.

In addition to better performance, the GRCCA method allows us to track the effect
of the variation inside each brain region (controlled by the λ1 penalty factor) on the
resulting canonical correlation separately from the effect of the variation across the
regions (controlled by µ1 penalty factor). For example, the spikes for small µ1 values
suggest that it is more beneficial to reduce within group variation than between
group one. In other words, shrinking all brain region coefficients towards the group
means improves the performance more than shrinking group means towards zero.
Moreover, for small µ1 it is the ratio of hyperparameters that plays the key role: the
highest score is always achieved when λ1

µ1
= 100. For large µ1 this pattern disappears

as we start to over-penalize both between and within group variations.
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Figure 6 The cross-validation curves obtained via GRCCA with ten fold cross-validation for the Human
Connectome Project dataset. Left panel: (unpenalized) correlation between train canonical variates. Right
panel: (unpenalized) correlation between validation canonical variates
Note: For colour figure, please refer to the online version.
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Figure 7 Nested cross-validation scores computed for three models: RCCA fitted on the averaged data
(red, 229 features), RCCA fitted on the original data (green, 90 368 features), GRCCA (blue). Two scores are
reported: cv.validation = maximum score obtained via ten fold cross-validation, averaged across 11 NCV
folds; test = score computed on independent test set, averaged across 11 NCV folds
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5.4 Using GRCCA for visualization

In this section we demonstrate another advantage of GRCCA in the context of
visualization and interpretability. In Figure 8, we present the coefficient paths (α
vs. λ1) produced by the RCCA method as well as the group modification. Here
different colours represent different brain regions. According to the plot, we observe
the following behaviour of the coefficients. For the RCCA method the canonical
coefficients are shrunk towards zero all together with the growth of λ1. On the
contrary, for large λ1 all the GRCCA coefficient paths become horizontal, which
implies the convergence of the coefficients to the group means. Finally, increasing µ1
shrinks all the group means towards zero encouraging differentiating sparsity on a
group level.

In Figure 9, we present the brain images computed for µ1 = 1 and λ1 =
1,10,100,1 000. Note that larger λ1 makes the brain region pattern more obvious
(similar to Figures 3a–3b). Moreover, for λ1 = 100 we get the plot corresponding
to the best GRCCA model from Section 5.3. Thus, the GRCCA model chosen
by cross-validation has not only better performance on the validation set than the
RCCA model, but it is also more interpretable in the context of the importance of
each brain region. Specifically, the canonical component had especially high positive
loadings in subcortical regions involved in reward processing, such as the striatum
(nucleus accumbens, putamen) and thalamus (Haber, 2017). It also loaded positively
on a cortical network encompassing the temporal lobe, dorsolateral prefrontal,
dorsomedial prefrontal, posterior cingulate and precentral cortices (see Figure 9 for
an annotated visualization of these results). Most of these regions have been shown
to be connected to the striatum and to be part of key reward-processing pathways as
well (Haber, 2017).

6 General approach to regularization

It turns out that all RCCA, PRCCA and GRCCA methods are similar in nature: they
perform regularization by means of adjusting covariance matrices 6̂XX and/or 6̂YY in
the denominator of the modified correlation coefficient. In this section, we consider
the class of CCA problems with general weighted `2 regularization.

If KX,KY ∈ Rp×p are some positive semi-definite penalty matrices, then the general
modified correlation coefficient can be written as

ρ(α, β; KX,KY) =
α>6̂XYβ√

α>(6̂XX + KX)α
√
β>(6̂YY + KY)β

. (6.1)

The accompanying general RCCA optimization problem is therefore

maximize α>6̂XYβ w.r.t. α ∈ Rp and β ∈ Rq

subject to α>6̂XXα = 1, α>KXα ≤ t1 and β>6̂YYβ = 1, β>KYβ ≤ t2. (6.2)
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Figure 8 Coefficient paths for RCCA and GRCCA with colours representing the regions. The RCCA method
shrinks canonical coefficients towards zero all together with the growth of λ1. The GRCCA method shrinks
them towards the group means with the growth of λ1, whereas increasing µ1 shrinks all the group means
towards zero
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Figure 9 From top to bottom: GRCCA coefficients for µ1 = 1 and λ1 = 1,10,100,1 000. The third row
represents the solution produced by the cross-validation procedure. Annotation of brain regions: [1]
nucleus accumbens, [2] putamen, [3] thalamus, [4] temporal lobe, [5] dorsolateral prefrontal cortex, [6]
dorsomedial prefrontal cortex, [7] posterior cingulate cortex, [8] precentral cortex
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Note that the inequality constraints in (6.2) can be rewritten as ‖α‖KX ≤ t1 and
‖β‖KY ≤ t2, where ‖ · ‖A is weighted Euclidean norm defined as ‖x‖A = x>Ax. The
resulting canonical variates and coefficients can be found via the singular value

decomposition of the matrix
(
6̂XX + KX

)− 1
2 6̂XY

(
6̂YY + KY

)− 1
2 . To handle General

RCCA in high dimensions, one can link it to the two methods for which we already
established the kernel trick. In the Supplement Section 3 we provide the proof of the
following lemma.

Lemma 6.3. [General RCCA to RCCA/PRCCA] If both KX and KY are positive
definite then, by some proper change of basis, the general RCCA problem can be
reduced to the RCCA one. Alternatively, if one of KX and KY has zero eigenvalues
then general RCCA boils down to solving the PRCCA problem with number of
unpenalized coefficients equal to the multiplicity of the zero eigenvalue.

7 Simulation study

7.1 Generating data with a group structure

In this section, we set up a small simulation experiment where we compare
performance of all the above methods on the data with group structure. We generate
the data as follows. For random vector X we assume that it is grouped into K groups
of equal size, thereby having pk = p

K variables in group k. Each group of X is generated
by one of K centroid random variables and is obtained by adding some Gaussian
noise to the centroid. Moreover, we assume the presence of some correlation between
the centroids and Y. To be precise, to generate the data we exploit the multivariate
normal distribution as a joint distribution of random vector Y ∈ Rq and random
vector of centroids Xc

∈ RK:

(Y,Xc) ∼ Nq+K(0, 6) with 6 =
(

Iq 11>σ2
XY

11>σ2
XY IK

)
.

Next, we generate random vector Xk ∈ Rpk corresponding to groups k = 1, . . . ,K
from the distribution Xk|Xc

k ∼ Npk(1Xc
k, σ

2
XI), where Xc

k is the kth component of the
centroid vector. Finally, we obtain matrices X = (X1, . . . ,XK) ∈ Rn×p and Y ∈ Rn×q by
drawing n samples from the above distributions. In our experiments we use n = 10,
p = 15 and q = 3, the number of groups is K = 5. We set σX = 1 and test two settings:
σXY = 0.5 for correlated data and σXY = 0 for independent data.

As the next step, we run RCCA, PRCCA and GRCCA on the generated
data imposing the regularization on the X part only and using the following
hyperparameters. For all methods the penalty factor is chosen to be λ1 =
10−5,10−4, . . . ,104,105. For PRCCA we penalize p1 = 10 variables only leaving
p2 = 5 variables untouched; these five unpenalized variables correspond to the first
features in each group. For GRCCA we again try two versions. First, we run GRCCA
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with µ1 = 0, that is, without differentiating sparsity on a group level assumption.
Next, we add differentiating sparsity to GRCCA and vary the penalty factor in the
range µ1 = 10−4,10−3, . . . ,1,10.

We compare all methods in terms of resulting correlations. For this purpose,
we generate 1 000 train and test sets, fit models on train and evaluate canonical
correlation value on test. We plot average train and test correlations as well as
their one standard error intervals vs. penalty factor λ1 (see Figure 10). According to
the plot, for the correlated data the best test score is achieved by sparse version
of GRCCA, which significantly outperforms RCCA. Better performance can be
explained by the presence of the groups structure in the data. Note that non-sparse
GRCCA also looses in terms of the test score. The possible reason is that number
of observations (n = 10) is only twice as large as the number of groups (K = 5),
so regularization on a group level helps to prevent overfitting to train data. In the
case of independent data, all the competitors perform in a similar way: The average

Figure 10 Train and test curves computed via simulation. Four models presented: RCCA, PRCCA and
GRCCA with zero (µ1 = 0) and non-zero sparsity (µ1 = 1). First row: train and test correlation obtained for
data with correlation (σXY = 0.5). Second row: train and test correlation obtained for uncorrelated data
(σXY = 0)
Note: For colour figure, please refer to the online version.
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Figure 11 Coefficient values obtained via RCCA, PRCCA and two versions of GRCCA with
hyperparameter λ1 chosen to maximize the test correlation. In this plot colour corresponds to the group
number

test correlation is very close to zero regardless the hyperparameter value; the test
correlation curves are almost flat.

Finally, for each model we pick the value of λ1 according to the maximum test score
and compare the CCA coefficients α for the chosen models. Figure 11 displays the
main difference between the RCCA and GRCCA methods. Although both techniques
aim to reduce the data dimensionality, the reduction is achieved in a different way.
Unlike RCCA, which treats all the coefficients equally and confines their deviation
from zero, GRCCA carries out the reduction treating equally the coefficients inside
each group and removing the within group noise. To sum up, in the presence of a
group structure the group modification of RCCA allows for dimensionality reduction
in a more efficient and interpretable way.

8 Discussion

In this article, we proposed several approaches to the CCA regularization. The
introduced PRCCA technique has a similar flavour as RCCA, but it penalizes only a
subset of canonical coefficients. Both of these methods combined with the proposed
kernel trick allows us to find the CCA solution even in case of extremely high
data dimensionality. We further present the GRCCA method, which is based on the
underlying group structure of the data and which, therefore, can be useful in some
applications, and extend regularization to the case of a more general regularization
penalty thereby proposing General RCCA. The close connection between the latter
techniques with RCCA and PRCCA methods enables to utilize the kernel trick
in the general case thus providing a powerful tool for regularizing CCA in the
high-dimensional framework.

There is still much scope for future work. One interesting direction for further
research is to consider other applications of the proposed group RCCA technique. For
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example, there are many problems in genetics where genes are grouped by functional
similarity. Further, in this article we cover only two types of penalties: partial and
group; although the proposed kernel trick can handle any `2-type penalty (see Section
6 for general RCCA). Thus we can study other structured modifications of RCCA
that can be beneficial for applications. As an example, it may be interesting to explore
hierarchical group structure, where not only brain loci are combined in some regions,
but also regions are combined in some groups (e.g., we have cortical and subcortical
groups in the HCP study).

From the computational point of view, it would be useful to investigate how
one can optimize the choice of the hyperparameters. The following idea is inspired
by ridge regression, which also uses the `2 penalty. Note that currently it is not
necessary to apply any data normalization before running regularized CCA (all the
fMRI features have the same scale). However, the overall scale of X influences the
choice of the hyperparameters, that is, multiplying X by some number a implies
increasing the penalty factors by a2 times as well. Therefore, it would be beneficial
to develop some recommendations for the grid of hyperparameters the user should
search through. For instance, we can use the ridge regression heuristic and introduce
a concept of degrees-of-freedom (aka df ) for CCA with regularization. Then, we can
base the hyperparameter recommendation on the df value.

Software

Proposed methods are implemented in the R package RCCA; the software is available
from Github (https://github.com/ElenaTuzhilina/RCCA).

Supplementary material

Supplementary material is available online http://www.statmod.org/smij/
archive.html.
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