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SUMMARY

Three-dimensional (3D) genome spatial organization is critical for numerous cellular processes, including
transcription, while certain conformation-driven structural alterations are frequently oncogenic. Genome
architecture had been notoriously difficult to elucidate, but the advent of the suite of chromatin confor-
mation capture assays, notably Hi-C, has transformed understanding of chromatin structure and provided
downstream biological insights. Although many findings have flowed from direct analysis of the pairwise
proximity data produced by these assays, there is added value in generating corresponding 3D reconstruc-
tions deriving from superposing genomic features on the reconstruction. Accordingly, many methods for
inferring 3D architecture from proximity data have been advanced. However, none of these approaches
exploit the fact that single chromosome solutions constitute a one-dimensional (1D) curve in 3D. Rather,
this aspect has either been addressed by imposition of constraints, which is both computationally burden-
some and cell type specific, or ignored with contiguity imposed after the fact. Here, we target finding a
1D curve by extending principal curve methodology to the metric scaling problem. We illustrate how this
approach yields a sequence of candidate solutions, indexed by an underlying smoothness or degrees-of-
freedom parameter, and propose methods for selection from this sequence. We apply the methodology to
Hi-C data obtained on IMR90 cells and so are positioned to evaluate reconstruction accuracy by refer-
encing orthogonal imaging data. The results indicate the utility and reproducibility of our principal curve
approach in the face of underlying structural variation.

Keywords: 3D structure; Genome reconstruction; Hi-C assay; Metric scaling; Multiplex FISH.

1. INTRODUCTION

The three-dimensional (3D) configuration of chromosomes within the eukaryote nucleus is important for
several cellular functions, including gene expression regulation, and has also been linked to translocation
events and cancer driving gene fusions (Mitelman and others, 2007). While direct visualization of 3D
architecture has improved (see Section 2.9), imaging challenges pertaining to chromatin compaction and
dynamics persist. However, the ability to infer chromatin architectures at increasing resolution has been
enabled by chromosome conformation capture (3C) assays (Dekker and others, 2002). In particular, when
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Principal curves approaches for inferring chromatin architecture 627

coupled with next generation sequencing, such Hi-C methods (Lieberman-Aiden and others, 2009; Duan
and others, 2010) yield an inventory of pairwise, genome-wide chromatin interactions, or contacts. In turn,
the contact data form the basis for reconstructing 3D configurations (Zhang and others, 2013; Varoquaux
and others, 2014; Ay and others, 2014; Zou and others, 2016; Rieber and Mahony, 2017). While many
novel conformational-related findings have flowed from direct analysis of contact level data, added value
of performing downstream analysis based on attendant 3D reconstructions has been demonstrated. These
benefits derive from the ability to superpose genomic features on the reconstruction. Examples include
co-localization of genomic landmarks such as early replication origins in yeast (Witten and Noble, 2012;
Capurso and Segal, 2014), gene expression gradients in relation to telomeric distance and co-localization
of virulence genes in the malaria parasite (Ay and others, 2014), the impact of spatial organization on
double strand break repair (Lee and others, 2016), and elucidation of “3D hotspots” corresponding to (say)
overlaid ChIP-Seq transcription factor extremes which can reveal novel regulatory interactions (Capurso
and others, 2016).

The contact or interaction matrices resulting from Hi-C assays, which are typically performed on
bulk cell populations, are depicted as heatmaps, which record the frequency with which pairs of binned
genomic loci are cross-linked, reflecting spatial proximity of the respective loci bins within the nucleus.
A common first step toward 3D reconstruction is the conversion of contact frequencies into distances,
typically assuming inverse power-law relationships (Varoquaux and others, 2014; Ay and others, 2014;
Shavit and others, 2014; Rieber and Mahony, 2017), from which 3D chromatin architecture can be obtained
via versions of the multi-dimensional scaling (MDS) paradigm. In response to (i) the bulk cell population
underpinnings of contact data, (ii) computational challenges posed by the dimensionality of the MDS
reconstruction problem as governed by bin extent, and (iii) accommodating biological considerations,
several competing reconstruction algorithms have been advanced. However, none of these take advantage
of the fact that the 3D solution for individual chromosomes corresponds to a one-dimensional (1D)
curve in three-space. Rather, this aspect has been addressed by imposition of constraints (Duan and
others, 2010; Ay and others, 2014; Stevens and others, 2017), which are cell type specific and require
prescription of constraint parameters. These parameters can be difficult to specify and their inclusion
substantially increases the computational burden. Other approaches (Zhang and others, 2013; Park and
Lin, 2017; Rieber and Mahony, 2017) do not formally incorporate contiguity but impose it post hoc,
creating chromatin reconstructions by “connecting the dots” of the 3D solution according to the ordering
of corresponding genomic bins.

Here, we directly target chromosome reconstruction by finding a 1D curve approximation to the contact
matrix via extending principal curve methodology (Hastie and Stuetzle, 1989) to the metric scaling prob-
lem.After reviewing problem formulation and current reconstruction techniques in Section 2.1, we develop
two building blocks, Principal Curve Metric Scaling (PCMS; Sections 2.2 and 2.3) and Weighted PCMS
(WPCMS; Sections 2.4 and 2.5), that enable our novel Poisson Metric Scaling (PoisMS; Sections 2.6 and
2.7) approach. Strategies for selecting a specific reconstruction from a degrees-of-freedom indexed series
of solutions are described in Section 2.8. Methods for appraising the accuracy of candidate reconstructions
using orthogonal imaging data are outlined in Section 2.9. Results from applying the methodology to Hi-C
data from IMR90 cells are presented in Section 3, while the Discussion indicates directions for future work.

2. METHODS

2.1. Existing approaches to 3D chromatin reconstruction from Hi-C assays

Our focus is on reconstruction of individual chromosomes; whole genome architecture can follow by
appropriately positioning these solutions (Segal and Bengtsson, 2015; Rieber and Mahony, 2017). As is
standard, we disregard complexities deriving from chromosome pairing arising in diploid cells (which
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628 E. TUZHILINA AND OTHERS

Fig. 1. Log-transformed contact matrix log(C). White color corresponds to Cij = 0 or, equivalently, log(Cij) = −∞.

can be disentangled at high resolutions; Rao and others, 2014) and address issues surrounding bulk cell
experiments and inter-cell variation in the Discussion.

The result of a Hi-C experiment is the contact map, a symmetric matrix C = [Cij] ∈ Z
n×n
+ of contact

counts between n (binned) genomic loci i, j on a genome-wide basis; Figure 1 provides an example. We
defer questions surrounding contact matrix normalization. This matrix can be exceedingly sparse, even
after binning. The 3D chromatin reconstruction problem is to use the contact matrix C to obtain a 3D
point configuration x1, . . . , xn ∈ R

3 corresponding to the spatial coordinates of loci 1, . . . , n respectively;
Figure 2 gives an illustration.

Many approaches have been proposed to tackle this problem with broad distinction between optimiza-
tion and model-based methods (Varoquaux and others, 2014; Rieber and Mahony, 2017). A common
first step is conversion of the contact matrix into a distance matrix D = [Dij] (Duan and others, 2010;
Varoquaux and others, 2014; Ay and others, 2014; Shavit and others, 2014), followed by solving the
MDS (Hastie and others, 2009) problem: position points (corresponding to genomic loci) in 3D so that
the resultant interpoint distances best conform to the distance matrix.

A variety of methods have also been used for transforming contacts to distances. At one extreme, in
terms of imposing biological assumptions, are methods that relate observed intra-chromosomal contacts
to genomic distances and then ascribe physical distances based on organism specific findings on chromatin
packing (Duan and others, 2010) or relationships between genomic and physical distances for crumpled
polymers (Ay and others, 2014). Such distances inform the subsequent optimization step as they permit
incorporation of known biological constraints that can be expressed in terms of physical separation.
Importantly, these constraints include prescriptions on the 3D separation between contiguous genomic
bins. It is by this means that obtaining a 1D curve is indirectly facilitated. However, obtaining physical
distances requires both strong assumptions and organism specific data (Fudenberg and Mirny, 2012). More
broadly, a number of approaches (Zhang and others, 2013; Varoquaux and others, 2014; Zou and others,
2016; Rieber and Mahony, 2017) utilize power-law transfer functions to map contacts to (non-physical)
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Fig. 2. X̂df , the projections of the resulting reconstruction, with colors (orange, teal) distinguishing chromosome
arms, and −D2(X̂df ) + β, the approximation of log(C), obtained via PoisMS for differing degrees-of-freedom
values df .

distances Dij =
{

(Cij)
−α if Cij > 0,

∞ if Cij = 0.
Adoption of the power law derives from empirical and theoretical

work but again constitutes a strong assumption (Fudenberg and Mirny, 2012).
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630 E. TUZHILINA AND OTHERS

Once we have a distance matrix D, optimization approaches seek a 3D configuration x1, . . . , xn that
best fits D according to an MDS criterion. If ‖ ·‖ designates the Euclidean norm, then an example of MDS
loss incorporating weights and penalty (Zhang and others, 2013) is

�(x1, . . . , xn) =
∑

{i,j|Dij<∞}
Wij(‖xi − xj‖ − Dij)

2 − λ
∑

{i,j|Dij=∞}
‖xi − xj‖2 (2.1)

with the corresponding optimization problem

minimize �(x1, . . . , xn) w.r.t. x1, . . . , xn ∈ R
3. (2.2)

Here, common choices for the weights Wij include D−1
ij (Zhang and others, 2013) and D−2

ij (Varoquaux and
others, 2014), these being analogous to precision weighting since large Cij (small Dij) are more accurately
measured. Similarly, the penalty (second) term maximizes the pairwise distances for loci bins with Cij = 0
under the presumption that such loci should not be too close.

It is worth noting that (2.1), and related criteria, correspond to a nonconvex, nonlinear optimization
problem that is NP hard and while various devices have been employed to mitigate the computational
burden (e.g., Zhang and others, 2013), computational concerns, particularly for high resolution (many
loci bins) problems, remain forefront.

Probabilistic methods model the contact counts with an optimization goal of maximizing the
corresponding log-likelihood.

In particular, Poisson models, Cij ∼ Pois(λij), are widely used (Varoquaux and others, 2014; Zou
and others, 2016; Park and Lin, 2017), where λij = λij(x1, . . . , xn) is a function of the genomic loci
spatial coordinates x1, . . . , xn. For example, Rosenthal and others (2019) prescribe exponential dependence
between the Poisson rate parameter and inter-loci distances: λij = β‖xi−xj‖α for some α < 0, a framework
we slightly modify in Section 2.6.

All existing approaches implicitly represent chromatin as a polygonal chain. Constraints on the geo-
metrical structure of the polygonal chain can be imposed via penalties on edge lengths and angles
between successive edges, with even quaternion-based formulations employed (Caudai and others, 2015).
Rosenthal and others (2019) utilize penalties to control smoothness of the resulting conformations. How-
ever, despite imparting targeted properties to the resulting reconstruction, such penalty-based approaches
increase the complexity of the objective, its gradient and Hessian, both slowing and limiting, especially
with respect to resolution, associated algorithms.

Here, we develop a suite of novel approaches that directly model chromatin configuration as a 1D
curve in 3D. Our primary method, Poisson Metric Scaling (PoisMS), is based on a Poisson model for
contact counts and provides an efficient means for obtaining smooth 1D reconstructions, that combines
advantages of both MDS and probabilistic models. This technique utilizes two building blocks of intrinsic
interest. First, we introduce the PCMS approach that features an optimization problem inspired by MDS
and stated in terms of inner products. This problem admits a simple solution obtained via the singular
value decomposition. Next, we develop WPCMS, a weighted version of PCMS that, importantly, models
distances rather than inner products and further permits control over the influence of particular elements
of the contact matrix on the resulting reconstruction. This technique requires an iterative algorithm that
uses PCMS as the core component. Finally, WPCMS in turn can be used in conjunction with projected
gradient descent (PGD) to solve a second-order approximation of the Poisson log-likelihood, yielding our
PoisMS algorithm.
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2.2. PCMS: metric scaling with a smooth curve constraint

The PCMS technique is based on classical MDS. Given a symmetric matrix Z , PCMS treats it as a
similarity matrix and approximates it by an inner product matrix (Buja and others, 2008). In particular, Z
can correspond to the contact matrix after conversion to a distance matrix followed by double centering,
the standard MDS device that turns (Euclidean) squared distances into inner products. We illustrate this
approach in the Section S2 of the Supplementary material available at Biostatistics online with distances
obtained via power-law transformation. However, while it is thereby possible to use PCMS as a standalone
reconstruction tool, we seek methods that avoid having to convert contacts to distances. So, here we develop
PCMS with a view to utilizing it as a building block of our PoisMS technique.

Let X =
⎛
⎝−xT

1 −
. . .

−xT
n −

⎞
⎠ ∈ R

n×3 be the matrix of genomic loci coordinates and let S(X ) = XX T refer to

the inner product matrix of the reconstruction X . If ‖ · ‖F denotes the Frobenius norm, then the goal is to
minimize the Strain objective:

�(x1, . . . , xn) =
n∑

i=1

n∑
j=1

(
Zij − 〈xi, xj〉

)2 ⇐⇒ �(X ) = ‖Z − S(X )‖2
F . (2.3)

Instead of adding a smoothness penalty to the objective, we impose an additional constraint:

x1, . . . , xn ∈ γ , where γ is a smooth one-dimensional curve in R
3. (2.4)

This constraint will serve to capture the inherent contiguity of chromatin. We model the curve γ by a
cubic spline with k degrees-of-freedom as follows (Hastie and others, 2009). Suppose h1(t), . . . , hk(t) are
cubic spline basis functions in R

1 then

γ (t) = (γ1(t), γ2(t), γ3(t))
T , where γj(t) = ∑k

�=1 ��j h�(t) for j = 1, 2, 3.

Let ti index the genomic locus of xi in the parameter space of γ , i.e., xi = γ (ti), and H ∈ R
n×k be the

matrix of spline basis evaluations at ti, i.e., Hi� = h�(ti). Since binning typically results in evenly spaced
genomic loci it is convenient to set t1 = 1, t2 = 2, . . . , tn = n, although irregular spacing is readily
handled. So, the constraint (2.4) can be written as Xij = ∑k

�=1 ��j h�(ti), or equivalently, in matrix form
as X = H� leading to the optimization problem

minimize �PCMS(�) = ‖Z − S(H�)‖2
F w.r.t. � ∈ R

k×3. (2.5)

Hereafter, we denote the corresponding solution by �̂ = PCMS(Z , H ), the resulting chromatin
reconstruction by X̂ = H�̂ and the approximation of the original matrix Z as Ẑ = S(X̂ ).

2.3. PCMS solution via eigen-decomposition

Note that the parameter � in the PCMS problem (2.5) is unconstrained. Since � is defined up to a
multiplication by a full-rank matrix, we can assume H to be a matrix with orthogonal columns. To find
the PCMS solution the following lemma, proved in Section S1 of the Supplementary material available
at Biostatistics online, is useful.
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LEMMA 1 If H ∈ R
n×k is a matrix with orthogonal columns, i.e., H T H = I , then problem (2.5) is

equivalent to

minimize �̃PCMS(�) = ‖H T ZH − ��T ‖2
F w.r.t. � ∈ R

k×3. (2.6)

Minimizing �̃PCMS(�) can be interpreted as approximating the matrix H T ZH by a positive semi-definite
rank 3 matrix ��T . Assuming that the symmetric matrix H T ZH has at least three positive eigenvalues
the solution can be found via eigen-decomposition of H T ZH : let H T ZH = Q�QT for orthogonal Q and
diagonal � = diag(λ1, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥ λn, then

� = Q
√

�3, where
√

�3 = diag(
√

λ1,
√

λ2,
√

λ3, 0, . . . , 0).

The computational efficiency of PCMS derives from the fact that it relies on eigen-decomposition of a
small k × k matrix, requiring only O(k3) additional operations.

2.4. WPCMS: a distance-based model for chromatin reconstruction

As indicated, direct application of PCMS to Hi-C data is limited by the need to convert contact counts
to distances and then (via double centering) to inner products since such conversion can be problem-
atic. Even simplistic approaches, based on power-law transformation, prescribe a value for the index
parameter, failing to accommodate dependence of the index on influencing factors such as cell type, chro-
mosome, organism, and resolution. Moreover, the double centering trick requires that resultant distances
be Euclidean.

Accordingly, we develop a distance-based version of PCMS, wherein the symmetric matrix Z contains
pairwise squared distances, as opposed to inner products.Additional flexibility is facilitated by introducing
weights to the problem setup, which permits control over the impact of particular elements Zij on the
reconstruction, for example to counteract diagonal dominance (Yang and others, 2017). Although the
resulting technique, Weighted PCMS (WPCMS), can again be used as a standalone reconstruction tool
(Section S5 of the Supplementary material available at Biostatistics online), akin to PCMS its primary
purpose is as component of the PoisMS approach.

We introduce a matrix of weights W ∈ [0, 1]n×n, denote by D(X ) the matrix of pairwise distances
between genomic loci and consider the following loss function

�(x1, . . . , xn) =
n∑

i=1

n∑
j=1

Wij

(
Zij − ‖xi − xj‖2

)2 ⇐⇒ �(X ) =
∥∥∥√

W ∗ (
Z − D2(X )

)∥∥∥2

F
(2.7)

where ∗ refers to the Hadamard (element-wise) product and matrix squaring is also element-wise. The
WPCMS problem can be stated as follows:

minimize �WPCMS(�) =
∥∥∥√

W ∗ (
Z − D2(H�)

)∥∥∥2

F
w.r.t. � ∈ R

k×3. (2.8)

The corresponding solution and reconstruction are denoted by �̂ = PCMSW (Z , H ) and X̂ = H�̂,
respectively, along with the corresponding approximation Ẑ = D2(X̂ ) of matrix Z .
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2.5. Iterative algorithm for solving the WPCMS problem

Problem (2.8) can be elegantly solved using PGD (Hastie and others, 2015), broadly used to solve
constrained optimization problems. We first exploit the fact that the matrix of squared distances can be
rewritten in terms of the inner product matrix:

D2(X ) = diag(S(X )) · 1T + 1 · diag(S(X ))T − 2S(X ). (2.9)

Here, 1 = (1, 1, . . . , 1)T ∈ R
n and diag(S(X )) = (‖x1‖2, ‖x2‖2, . . . , ‖xn‖2

)T
is the diagonal of the inner

product matrix. So, (2.8) can be restated in terms of inner products:

minimize �WPCMS(S) =
∥∥∥√

W ∗ (
Z − diag(S)1T − 1 diag(S)T + 2S

)∥∥∥2

F
(2.10)

w.r.t. S ∈ M(H ) = {
H��T H T : � ∈ R

k×3
}

.

The PGD procedure alternates the following two steps:

[Gradient] S := S − ∇�WPCMS(S) and [Projection] S := projM(H )(S).

Here projM(H )(S) denotes the projection of matrix S onto the matrix manifold M(H ). The [Gradient] step
makes recourse to the following Lemma, proved in Section S3 of the Supplementary material available at
Biostatistics online.

LEMMA 2 Let D2 denote the matrix of squared distances corresponding to inner product matrix S (as in
2.9). If G = W ∗ (

Z − D2
)

and G+ = diag(G · 1) is the diagonal matrix containing row sums of G on the
diagonal, then up to a scaling factor ∇�WPCMS(S) = G − G+.

Next, note that the [Projection] step requires solving the optimization problem

minimize ‖S − H��T H T ‖2
F w.r.t. � ∈ R

k×3,

which is easily done using PCMS. Thus, we end up with the following PGD procedure:

(1) [Initialize] Generate random � ∈ R
k×3, set the reconstruction X = H�.

(2) Repeat until convergence:
2.1 [SDG] Calculate the current guess for the inner product matrix S = XX T and use it to compute

the matrix of squared distances D2 = diag(S) · 1T + 1 · diag(S)T − 2S. Then compute G =
W ∗ (

Z − D2
)

as well as G+ = diag(G · 1).
2.2 [Gradient] Update matrix of inner products S := S − (G − G+).
2.3 [Projection] Update spline coefficients using PCMS � := PCMS(S, H ), then update the

reconstruction X = H�.

Convergence is assessed via the stopping criterion
∣∣∣ �WPCMS(�old )−�WPCMS(�new)

�WPCMS(�old )

∣∣∣ < ε1, where ε1 is a

pre-chosen accuracy rate, and �old and �new are � values calculated at the previous and current iter-
ations respectively. Details and extensions of WPCMS are provided in the Sections S4 and S6 of the
Supplementary material available at Biostatistics online.
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2.6. PoisMS: Poisson model for contact counts

We now develop our primary approach, Poisson Metric Scaling (PoisMS), using WPCMS as a building
block. We define a probabilistic model for contact counts based on natural and previously adopted assump-
tions: Poisson distributed counts Cij with dependence of the Poisson mean on chromatin 3D structure,
specifically on pairwise (squared) distances between genomic loci:

Cij ∼ Pois(λij), log(λij) = −‖xi − xj‖2 + β, (2.11)

with β ∈ R an intercept parameter. The negative log-likelihood objective is

�PoisMS(X , β) =
∑

1≤i,j≤n

[
e−‖xi−xj‖2+β − Cij

(−‖xi − xj‖2 + β
)]

(2.12)

and the Maximum Likelihood Estimation optimization problem under the smooth curve constraint (2.4)
is

minimize �PoisMS(H�, β) w.r.t. � ∈ R
k×3 and β ∈ R. (2.13)

In (2.11), we use squared distance rather than distance, reflecting criterion (2.1) and conferring compu-
tational convenience. We denote the corresponding matrix of spline coefficients by �̂ = PoisMS(C, H )

and the resulting chromatin reconstruction by X̂ = H�̂.

2.7. Iterative algorithm for solving PoisMS problem

A virtue of the Poisson model is that the second-order Taylor approximation (SOA) of the negative log-
likelihood (2.12) is simply the weighted Frobenius norm. Further, it is well known that the optimal value
of this SOA amounts to one step of the Newton method for optimizing the original loss function. We use
these facts to develop an iterative algorithm based on the WPCMS technique, which is equivalent to a
projected Newton Method.

First, we review the SOA of the negative Poisson log-likelihood in the univariate case. Suppose c ∼
Pois(λ). The negative log-likelihood �(λ) = λ − c log λ can be reparametrized in terms of the natural
parameter η = log(λ) leading to �(η) = eη − cη. Then the SOA of the reparametrized negative log-
likelihood at some point η0 = log λ0, up to scaling and shifting by a constant, is:

�(η) ≈ �SOA(η) = w(z − η)2 where w = eη0 = λ0 and z = η0 + c − λ0

λ0
.

The multivariate version is as follows. Suppose C ∈ Z
n×n
+ where Cij ∼ Pois(λij) and ηij = log(λij). Let

the respective matrices of Poisson and natural parameters be � = [λij] ∈ R
n×n
+ and H = [ηij] ∈ R

n×n.
Then the SOA of the negative log-likelihood at some point H0, up to scale and shift constants, is

�(H) ≈ �SOA(H) = ‖√W ∗ (Z − H)‖2
F where W = eH0 = �0 and Z = H0 + C − �0

�0
.

Here ∗ is the Hadamard (element-wise) product, with matrix exponentiation and division also being
interpreted as element-wise operations.
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Recall that in the Poisson model (2.11) the natural parameter depends linearly on the matrix of genomic
loci pairwise distances: H = log � = −D2(X ) + β. So, the SOA can be rewritten as

�SOA(X ) =
∥∥∥√

W ∗ (
Z + D2(X ) − β

)∥∥∥2

F
=

∥∥∥√
W ∗

(
Z̃ − D2(X )

)∥∥∥2

F
for Z̃ = −Z + β.

Suppose that the current reconstruction guess is X0 with corresponding natural parameter value H0 =
−D2(X0)+β. Then, we have the following approximation of the Poisson loss (2.12) at point H0 again up
to scaling and shifting by a constant:

�PoisMS(X , β) ≈ �SOA(X ) =
∥∥∥√

W ∗ (
Z − D2(X )

)∥∥∥2

F

where W = e−D2(X0)+β and Z = D2(X0) − C−W
W .

Thus, under the smooth curve constraint X = H�, the loss function �SOA(X ) coincides with the WPCMS
loss (2.8) and we obtain a nice application of the WPCMS algorithm, with the solution to the second-order
approximation of problem (2.13):

minimize �SOA(�) =
∥∥∥√

W ∗ (
Z − D2(H�)

)∥∥∥2

F
w.r.t. � ∈ R

k×3 (2.14)

being exactly � = PCMSW (Z , H ). This observation can be applied to simplify computations for the
Poisson model and underlies our PoisMS algorithm.

The last step of our PoisMS algorithm is to update β according to the current guess of �. This can be
done by optimizing the negative log-likelihood with respect to β. All together this leads to the following
algorithm that repeatedly approximates the Poisson objective at current guess � by a quadratic function
and shifts � towards the global minimum of this quadratic approximation:

(1) [Initialize] Generate random � ∈ R
k×3, set the reconstruction X = H�.

(2) Repeat until convergence:

2.1 [Update β] Update the intercept β := log
( ∑

1≤i,j≤n Cij∑
1≤i,j≤n e

−‖xi−xj‖2

)
.

2.2 [SOA] Calculate SOA matrices W = e−D2(X )+β and Z = D2(X ) − C−W
W .

2.3 [WPCMS] Update the spline coefficients using WPCMS approach � := PCMSW (Z , H ), then
update the reconstruction X = H�.

The stopping rule for the PoisMS algorithm is similar to WPCMS: for some fixed accuracy rate ε2

we check if the updated (�new, βnew) meets the criteria
∣∣∣ �PoisMS(�old ,βold)−�PoisMS (�new,βnew)

�PoisMS(�old ,βold)

∣∣∣ < ε2 after each

iteration of steps 2.1–2.3.
The nonconvexity of the PoisMS criteria (2.13) implies that initialization can impact the resulting

reconstruction. In the Sections S7–S10 of the Supplementary material available at Biostatistics online,
we discuss use of WPCMS to provide a warm start for the PoisMS algorithm, as well as algorithmic
extensions and computational complexity.

2.8. Determination of principal curve degrees-of-freedom

The main hyperparameter of the PoisMS approach is the spline degrees-of-freedom df (spline basis size),
which controls the smoothness of the resulting reconstruction. To determine the optimal value, for each
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df we create the spline basis matrix Hdf , find the corresponding solution (�̂df , β̂df ) and the resulting
reconstruction X̂df = Hdf �̂df . We measure the error rate by the normalized Poisson deviance, i.e.,

err(X̂df , β̂df ) = 2

n2

∑
1≤i,j≤n

[
Cij log

Cij

λij
− (

Cij − λij

)]
with λij = −D2(X̂df ) + β̂df . (2.15)

Initially, we tried cross-validation to find the optimal value of df , as is common for smoothing (penalty)
parameter determination. However, the complex and structural dependencies that characterize contact
matrices made this approach problematic. As an alternative we adopted an approach based on identifying
the “elbow" that is prototypic in graphs of resubstitution error, here err(X̂df , β̂df ), versus model complexity,
here df . The logic as to why this change point constitutes a basis for model complexity determination is
described in Breiman and others (1984) in terms of bias-variance tradeoff. Elbow identification is also
used for determining appropriate numbers of principal components (Jolliffe, 2002) and clusters (Hastie
and others, 2009), as well as dimension in MDS (Kruskal and Wish, 1978) and non-negative matrix
factorization (see Hutchins and others, 2008) problems.

2.9. Accuracy assessment via multiplex fluorescence in situ hybridization

While the prescription in Section 2.8 provides a means for selecting a particular PoisMS model, it does
not address the accuracy of the chosen model. The absence of gold standards makes such assessment chal-
lenging. In comparing competing 3D genome reconstructions several authors have appealed to simulation
(Zhang and others, 2013; Varoquaux and others, 2014; Zou and others, 2016; Park and Lin, 2017), how-
ever, real data referents are preferable. To that end, many of the same reconstruction algorithm developers
have made recourse to fluorescence in situ hybridization (FISH) imaging as a basis for gauging accuracy.
This proceeds by comparing distances between imaged probes with corresponding reconstruction-based
distances. But such methods are necessarily limited by the sparse number of probes (∼2–6; see Lieberman-
Aiden and others, 2009; Shavit and others, 2014; Park and Lin, 2017) and the modest resolution thereof,
many straddling over 1 megabase. The recent advent of multiplex FISH (Wang and others, 2016) trans-
forms 3D genome reconstruction accuracy evaluation by providing an order of magnitude more probes and
hence two orders of magnitude more inter-probe distances than conventional FISH. Moreover, the probes
are at higher resolution and centered at topologically associated domains (see Dixon and others, 2012).
We use this imaging data, along with companion accuracy assessment approaches (Segal and Bengtsson,
2018) to evaluate our PoisMS reconstructions.

The image-based 3D genomic coordinates furnished from multiplex FISH serve to define the gold
standard by which we assess reconstructions. The existence of numerous multiplex FISH replicates is
crucial for this task and three steps are necessary to effect such evaluation.

2.9.1. Obtaining the gold standard. Given N multiplex FISH replicates denote the matrix of the spatial
coordinates for replicate i ∈ {1, . . . , N } by Mi ∈ R

n0×3 where n0 denotes the number of distinct multiplex
FISH loci (probes) over all replicates. We start by defining the medoid replicate. For a pair of 3D confor-
mations, X1, X2 ∈ Rn0×3 denote the number of observed loci by n(X1, X2) and suppose dproc(X1, X2) is the
squared Procrustes distance from X2 to X1 following alignment allowing translation, rotation, and scaling
(Hastie and others, 2009). Then the dissimilarity between X1 and X2 is defined by

d(X1, X2) = 1

n(X1, X2)
dproc(X1, X2), (2.16)
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using asymmetric (scaling and rotation transforms applied to X2 only) Procrustes distance. This measure
of agreement between two reconstructions coincides with mean squared deviation (see, for example, Segal
and Bengtsson (2018)).

We next define the medoid replicate as the replicate whose (weighted) average dissimilarity to the other
replicates is minimal:

j∗ = argminj=1,...,N

N∑
i=1

d(Mi, Mj)∑N
k=1 d(Mi, Mk)

, (2.17)

with weights 1∑N
k=1 d(Mi ,Mk )

chosen to adjust for different scales of the multiplex FISH replicates. Next,

let M rot
i be the Procrustes alignment of Mi to the medoid Mj∗ . The average Procrustes conformation

M̄ , defined as the locus-wise average of the M rot
i , then serves as a gold standard. Our application of

Procrustes alignment prior to this (noise reducing) averaging accommodates translation, rotation, and
scaling differences between replicate conformations.

2.9.2. Computing the reference distribution. Treating the average Procrustes conformation M̄ as our gold
standard we obtain a reference distribution by measuring the dissimilarity between it and the multiplex
FISH replicates: d(M̄ , Mi). The resulting empirical distribution captures experimental variation around
the gold standard. A fine point is that this distribution will exhibit reduced dispersion compared to its
target population quantity owing to data re-use since Mi contributes to M̄ . While this concern could be
mitigated by employing leave-one-out techniques the large number of available replicates (>110) renders
this unnecessary (Segal and Bengtsson, 2018).

2.9.3. Evaluating chromatin reconstructions. To evaluate reconstructions resulting from the PoisMS
approach we first need to align the reconstruction with the gold standard. This may involve preliminary
coarsening of one or other coordinate sets to yield comparable resolution. Here, the genomic coordinate
ranges for each multiplex FISH probe are coarser than the Hi-C bins used in our reconstructions. So, we
calculate the average of the reconstruction coordinates falling in the corresponding multiplex FISH bins
to obtain a lower resolution reconstruction X̂ of the same dimension as M̄ . To quantify how close this
reconstruction is to the gold standard M̄ , we again measure dissimilarity following alignment d(M̄ , X̂ ).
Interpretations of this quantity in the context of the reference distribution are presented in the Section 3.

2.10. A contrasting reconstruction algorithm: HSA

To compare our PoisMS solution with an alternate reconstruction algorithm we make recourse to HSA
(Zou and others, 2016). This technique provides an interesting contrast in that it employs a similar
Poisson formulation to (2.12) but instead of contiguity being captured via principal curves per (2.4), it is
indirectly imparted by constraints that induce dependencies on a hidden Gaussian Markov chain over the
solution coordinates. Obtaining these spatial coordinates is achieved via simulated annealing with further
smoothness effected via distance-based penalization.

HSA has performed well in some benchmarking studies and features several compelling attributes
including (i) simultaneously handling multiple data tracks allowing for integration of replicate contact
maps and (ii) adaptively estimating the power-law index whereby contacts are transformed to distances
as previously emphasized. Nonetheless, in contrast to PoisMS, HSA incurs a substantial compute and
memory burden, and questions surrounding robustness have been raised (Rieber and Mahony, 2017).

To compare PoisMS performance with HSA we use the approach described in Section 2.9. Having
obtained a HSA reconstruction we measure the dissimilarity between the reconstruction and the gold
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Fig. 3. Error rate err(X̂df , β̂df ) vs. degrees-of-freedom df plot for the PoisMS approach. The segmented regression
is given by the piecewise linear fit (black) with the degrees-of-freedom selected via kink estimation indicated by the
red vertical line and segmentation change point corresponding to df = 25.

standard. The quantity so obtained is interpreted in the context of the attendant reference distribution (see
Section 3.3).

3. RESULTS

3.1. Chromosome reconstructions

We present PoisMS reconstructions for IMR90 cell chromosome 20 at 100kb resolution for which multi-
plex FISH and Hi-C data acquisition and processing has been previously described (Segal and Bengtsson,
2018). Results for chromosome 21 are presented in the section S11 of the Supplementary material available
at Biostatistics online.

In Figure 1, we present the heatmap for log(C). The resulting PoisMS reconstructions X̂df along with
the Poisson parameter matrix log(�df ) = −D2(X̂df ) + β, that can be viewed as an approximation of
log(C), are presented in Figure 2 for a series of degrees-of-freedom values.

3.2. Determining degrees-of-freedom

The graph of error rate err(X̂df , β̂df ) versus df reveals rapidly decreasing error rates up to df = 30 with
subsequent gradual decline (Figure 3). The optimal df according to the elbow heuristic, obtained using
the R package segmented (Muggeo, 2008), is df = 25, also shown in Figure 3.

3.3. Evaluating reconstructions via the multiplex FISH referent

Procrustes alignment of 3D conformations, and calculation of the corresponding distances dproc(·, ·), was
performed using the R packagevegan (Oksanen and others, 2019). We obtain the multiplex FISH medoid
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Fig. 4. Reference distribution measuring the dissimilarity between the gold standard M̄ and 111 multiplex FISH
replicate conformations Mi for chromosome 20. The vertical orange lines correspond to the dissimilarity between M̄
and the low-resolution reconstruction X̂df calculated via PoisMS for different df values; the light blue line corresponds
to the HSA reconstruction (see Sections 2.9 and 2.10).

conformation based on the smallest row sum (2.17) of the dissimilarity matrix of normalized Procrustes
distances (2.16) as described above. The 111 multiplex FISH replicate conformations are then aligned to
the medoid as a prelude to calculating the average Procrustes conformation—our gold standard. Figure 4
shows the histogram of dissimilarities between multiplex FISH replicates and our derived gold standard
that constitutes the reference distribution. We position the PoisMS reconstruction dissimilarities therein
corresponding to the indicated series of degrees-of-freedom values. HSA reconstruction dissimilarity
values are also included.

The following conclusions can be drawn from Figure 4. For chromosome 20 (see the Section S11 of
the Supplementary material available at Biostatistics online for chromosome 21), all fits for PoisMS lie
within the range of the multiplex FISH dissimilarity distribution that reflects experimental variation. The
fact that the PoisMS dissimilarity values are in the left tail of this distribution indicates the accuracy of
the proposed reconstructions, highlighting the utility of the proposed methodology. Further, that larger
dissimilarity values pertain for HSA, particularly for chromosome 21, suggests that PoisMS performs at
least comparably to this well benchmarked alternative. That PoisMS wall clock times are minutes rather
than days for HSA is notable.

4. DISCUSSION

Central to our principal curve based approaches to 3D chromatin reconstruction is that the configuration of
an individual chromosome within the nucleus can be treated as a contiguous 1D curve since the diameter
of the chromatin fiber is negligible compared to the nuclear volume. The extent to which the curve is
“smooth” is determined by an adaptively selected degrees-of-freedom parameter. As mentioned in Section
1, previous reconstruction methods either impart contiguity indirectly by prescribing constraints, which
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are difficult to specify, or impose it post hoc. In comparison, our methods based on principal curves are
computationally efficient, readily scale to high resolution contact data and are parsimonious with regard
tuning parameters.

Our implementation of PoisMS utilizes cubic spline basis functions, which contribute to this compu-
tational efficiency. However, the nature of chromatin folding and attendant Hi-C data is such that these
bases will be less effective in capturing fine 3D structure, as opposed to global backbone architecture.
This derives from the hierarchical, domain-based organization of chromatin, aspects that have been tackled
by some reconstruction algorithms using strategies that synthesize solutions obtained at differing scales
(Rieber and Mahony, 2017; Trieu and others, 2019). We will investigate whether principal curve solutions
can similarly serve as building blocks in addition to exploring the use of alternate basis functions, notably
wavelets.

Our analyses of Hi-C data from IMR90 cells was motivated by the availability of corresponding
multiplex FISH data enabling accuracy assessment. However, the extent and resolution of multiplex FISH
imaging is limited, narrowing the applicability of this means of evaluation. An even more fundamental
issue pertains to attempting chromatin reconstruction using bulk Hi-C data from large cell populations. As
has been emphasized (Lando and others, 2018), the presence of numerous conflicting contacts suggests
that the notion of a consensus underlying 3D conformation is questionable and that there is substantial cell-
to-cell structural variation. This places a premium on pursuing single-cell reconstructions as enabled by
the recent emergence of single-cell Hi-C protocols (Ramani and others, 2017). That one of these advances
(Stevens and others, 2017) also provides parallel imaging data, putatively enabling reconstruction accuracy
determination, underscores the importance of applying reconstruction methods in single-cell settings,
despite contact map sparsity, and is the subject of future work.

5. SOFTWARE

Proposed methods are implemented in the R package PoisMS; the software is available from Github
(https://github.com/ElenaTuzhilina/PoisMS).

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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