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Abstract

Forecasting methodologies have always attracted a lot of attention and have become an
especially hot topic since the beginning of the COVID-19 pandemic. In this paper we consider
the problem of multi-period forecasting that aims to predict several horizons at once. We
propose a novel approach that forces the prediction to be ”smooth” across horizons and
apply it to two tasks: point estimation via regression and interval prediction via quantile
regression. This methodology was developed for real-time distributed COVID-19 forecasting.
We illustrate the proposed technique with the CovidCast dataset as well as a small simulation
example.
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1 Introduction

Time series forecasting techniques are used to predict events that occur over time by analyzing
trends and patterns in past data. They are widely applicable across many fields of including
finance, economics, politics, sports, meteorology and epidemiology. The latter area became espe-
cially important since the beginning of the COVID-19 pandemic in December 2019.

Several time-series forecasting techniques have been proposed in the literature. Standard
statistical methods based on regressive models such as autoregressive (AR), moving average (MA),
autoregressive moving average (ARMA ), autoregressive integrated moving average (ARIMA) have
been commonly used to forecast time-series (Box and Jenkins, |1976). These Box-Jenkins methods
are particularly efficient when applied to a linear stationary time series; they can accommodate
the non-linear case by applying some appropriate transformation first. More recent approaches
are based on machine learning methods, in particular, artificial neural networks (Zhang et al.,
1998; |Ahmed et al., 2010; Makridakis et al., [2018). Compared to the ARIMA-type models, these
often demonstrate better performance in forecasting non-linear signals.

The standard application of these techniques aims to predict the signal for a single forecast
horizon (or "ahead”), most often one-step-ahead. However, in some applications such as epidemi-
ology, where decisions are often based on the future trend of signal, simultaneous forecasts for
multiple aheads can be of great interest. One of the popular methods for predicting several ahead
values is multi-stage prediction (MSP) or multi-period forecasting (MFP) (Chen et al.| 2004). This
approach is usually based on a single output model which is applied recursively, i.e. the predicted
value of the signal three weeks ahead is determined based on the already-produced predicted
values for one and two weeks ahead. The main disadvantages of such an iterative procedure is
error propagation. An alternative method suggested in the literature is called the multiple-input
multiple-output approach (MIMO), which aims to predict a vector of future values all at once (Bon-
tempi), [2008; Ben Taieb et al., 2010)). Detailed comparisons between different MIMO techniques
can be found in (Cheng et al., |2006; |An and Anh, [2015).

In this study we introduce a novel approach for predicting multiple ahead values simultaneously
which is based on the idea that the future signal can be well-approximated by a smooth curve.
The rest of the paper is organized as follows. In Section [2| we introduce the general multi-period

forecasting problem. In Sections we describe two regression-based approaches for solving it:



e a simple baseline method that predicts all aheads independently of each other (often termed

“direct” forecasting);
e and a novel MPF method that enforces smoothness across aheads.

We extend the methodology to the case that some of the response signals are unobserved in
Section [p| and propose an analogue based on quantile-regression in Section Sections [0}, [7] and
[ illustrate the MPF technique on a small simulation example as well as real COVID-19 case

incidence data obtained from the Delphi Epidata CovidCAST API (Reinhart et al., [2021]). We

conclude the paper with a Discussion where we suggest some future research directions.

2 Forecasting problem

In this section we state the general multi-period forecasting problem. The aim is to predict
multiple future values of a time-dependant variable using a set of features (also depending on
time). We begin by introducing some notation. Suppose that we measure a response variable
Yi(t) and a vector of p covariates X;(t) = (Xii(¢),...,X;,(t)) at time ¢ and location i. Denote
by A= {a,...,aq,} € R’éo the sorted set of target ahead values for the response variable; L, =
{lk1, .. lem, } € RTE a set of “lags” for the k-th predictor; and L = {Lq,...,L,} a list of lags

for all the covariates. Then the goal of multi-period forecasting (MPF) is to predict the response

variable for all the aheads, i.e.
Vit +A) = (Yt + ar),....Yi(t +a,)) € RY,
using all the lagged features at location 1, i.e.
Xi(t —L)= (Xa(t—L1),..., Xp(t — L)) € R™.
Here, by analogy with the response,
Xip(t — L) = (Xan(t — 1), - .o, Xip(t = b)) € R™

represents the lagged values of the k-th predictor at location i and m = »"7_, my corresponds to

the total number of lagged predictors.



A simple example of an MPF problem is: on December 15, predict the expected number of
newly reported of COVID-19 cases on December 15 and December 22 using the number of visits

to the doctor on December 8 and December 1 across all the U.S. states. In this case,

e ¢ is December 15, the forecast date;

1 represents a U.S. state;

e Y(t) is the number of COVID-19 cases in state i on day t;

X;(t) = (Xi1(t)) represents the number of doctor visits in state i on day ¢;

A = {0, 7} is the set of ahead values;

Ly = {7,14} is the set of lags.

Note that in many applications the response variable is also included in the set of predictors,

thereby incorporating the historical values of the response into the feature set.

3 Baseline linear model

A straightforward (direct) multi-period forecaster is a linear model for each location 7, timestamp

t and ahead value a:

p

Yilt+a) =YY" Xu(t —0) bela) + &(t + a). (1)

k=1 leLy

Here €,(t + a) ~ N(0,0%) are i.i.d errors and bys(a) are unknown model coefficients. In what
follows, we assume that the measurements are done at n locations and that multiple past values
are available. If we denote the set of the available past timestamps by 7' = {t1,...,ty} then
model leads us to the following objective

200 <Yi(t+a> =X > Xult—0) bke(a)) (2)

1=1 t€T acA k=1 4eLy

that we aim to minimize w.r.t. the model coefficients. We note that the resulting optimization goal

is nothing but a multivariate least-squares problem: the loss is separable in terms of ahead values,



s0 bge(a) can be found independently for each a € A via ordinary least squares with response
Yi(t + a) and predictors X;(t — L).
For convenience we will restate the objective in matrix form. To do so, we first denote all the

coefficients corresponding to the k-th predictor by

bk(a) = (bkfm (CL), ey bkﬁkmk (a)) c R™k
and form the coefficient matrix

bi(ar) - bplar)

bi(ag) - bylay)

Next, we denote the matrices of the response and the predictors measured at time ¢ by
Yi(t + A) Xi(t—1L)
Y(t)= : e R and X(t) = : e R™™
Y, (t+ A) Xn(t—1)
and concatenate all the data rowwise into
Y () X(t1)
Y = : eRV™ and X = : € RV,
Y(tn) X(tn)

Hence, the MPF optimization problem in Equation [2can be stated in multi-response regression

(MRR) form as

minimize |Y — XBT||, (3)

BeR™Xq

where || Z|[3. = 3., Z; is the squared Frobenius norm of a matrix Z. The explicit solution can be

found via the formula

BT = (X"X)'XTy.

We will refer to this forecaster as the Baseline MPF.



4 Smoothing constraint

The main disadvantage of the Baseline model is that the coefficients for all the response
columns are computed independently of each other. In other words, the model completely ignores
the underlying data structure, i.e. that each column of Y represents the same signal measured
for different ahead values. To incorporate this information into the MPF problem we desire some
smoothness in the model coefficients.

Specifically, we desire that each bgy(a) is a smooth function of ahead values. Such smoothness
can be enforced by requiring B to be representable as a linear combination of smooth basis

functions hq(a), ..., hq(a) (e.g. a spline or polynomial). This suggests the representation
bre(a Z 8;keh;(a) for some 6 € R. (4)

Here d is a hyperparameter that controls the flexibility of bys(a). In what follows, we refer to d as
the degrees-of-freedom. Combining with leads us to the smooth multi-period forecasting
(SMPF) objective

p d 2
mlmmlze Z Z Z ( (t+a) Z Z Xip(t —10) Z ijghj(a)> : (5)
Oower VIRE ST G k=1 (eLy, j=1

Note that the second term in involves all the unknown parameters 6;;, of the model, so the

resulting loss function is no longer separable. However, since the predicted values
t -+ CL Z Z sz t— Z ij,gh (6)
k=1 LeLy,

is a linear function of the coefficients it is still possible to find the explicit solution via regression.
Again, it is convenient to rewrite the loss function in matrix form. To do so, we first store all

the coeflicients in a matrix

0= e c Rdxm’ where ij = (Gjukl, c.. ,ijgkmk) e R™*,



Next, we introduce the basis matrix

h1<a1) hd(al)
H: e]Rq><d7

hi(ag) ... ha(ag)
where each column represents a function from the basis evaluated at all ahead values in A. As
a result, one can restate constraint in matrix form as B = HO and, together with , this
implies the SMPF optimization can be written as

inimize |Y — XOTHT||%. 7
minimize | I (7)

Note that in this problem the basis H is considered to be fixed, so the only unknown parameter is
O. The degrees-of-freedom d, which controls the size of the basis, is the model’s hyperparameter
and can be chosen from a grid of values via cross-validation.

Similar to the baseline model, it is possible to find an explicit solution to ([7]). First, without
loss of generality, we assume that H has orthogonal columns. Otherwise, one can take the QR
decomposition H = QR and apply the change of variables H = @ and O = RO. Next, since the
Frobenius norm is invariant under orthogonal transformations we can restate problem as

minimize |YH — XOT||%,
OcRdxm

which is, again, a multi-response regression problem with solution

0" =(X"X)'XTYH.

5 Missing values

This section extends the SMPF methodology proposed in Section [f] to the case when only part of
the response matrix Y is observed. In forecasting applications, missing values often occur. For
example, for a recent time ¢ and location ¢ we may not have observed response values Y;(t 4 a)
for all ahead values a € A as some of them have not occurred yet. Moreover, the data can be
updated at different times for different locations; thus, Y;(t + @) may not have been collected yet

for some 1.



To handle unobserved values we allow the set of ahead values to depend on the timestamp
t and location i and denote it by A;(t). We also assume that each A;(t) is a subset of original

A ={ay,...,a,}. One can derive the new loss function as follows

ZZZ( (t+a) ZZ)@HJZ@JM )2. (8)

i=1 t€T acA k=1 ¢eLy
Similar to Sections it is not hard to restate the SMPF optimization problem in matrix
form. Defining

1 ifa e Az(t)7
Wi(t + CL) =
0 otherwise,

to be a binary weight matrix representing the missingness of the response, then minimizing Equa-

tion is equivalent to solving

minimize |[IW o (Y — XOTH")||%, 9)
OcRdxm

where o refers to the element-wise Hadamard matrix product and W is the matrix containing all
the weights.

Unlike the unweighted case, weighted SMPF cannot be reduced to a multi-response regression
by simple manipulations with Frobenius norm. However, since the second term in (9)) is a linear
function of © it is still possible to restate it as an expanded ordinary least squares problem. Denote
w,y € RV and 6 € R the vectors obtained by the concatenation of columns of matrices W, Y
and OT, respectively. Writing X = H® X as the Kronecker product between H and X, then

Equation (9)) is equivalent to solving

minimize ||w o (y — X6)|2. (10)

feRdm
Note that for general w the solution can be found by means of the weighted regression with weights
w, response y and feature matrix X. However, if the weights are binary one can simply remove

the rows in y and X , that correspond to the zero weights, and use simple linear regression.

6 Simulation experiment

In this section we test the SMPF model from Section |5 on a small simulation example. For

simplicity we use only one forecast date ¢ and denote it as t = 0. We fix the number of locations

8



at n = 1000 and the number of predictors at p = 10. We also assume no lags for this model, i.e.
L = {0} for £ = 1,...,10. We first generate the matrix of covariates X € R™*? with elements
X ~ N(0,1). Further, we set the number of ahead values to ¢ = 30 and the set of ahead
values to A = {0,1,...,29}. To create B we evaluate orthogonal quadratic polynomial basis at
all elements in A and store them column-wise as H € R, Here d = 3 and each column of H
represents a basis function, including the intercept. Next, we draw the elements of the coefficient
matrix © € R>™ from standard normal distribution. Finally, we generate the matrix of errors
E € R™ with elements ¢; ; ~ N(0,0?) and compute the response matrix as Y = XOTH' + F.
We randomly sample 10% of the Y matrix elements and treat them as unobserved.

We use half of the locations to fit the smooth multi-period forecasting model and the remaining

2 such that the signal-to-

half to evaluate the model performance. We vary the error variance o
noise ratio is SNR = 0.1,0.5,1,2, and we use mean absolute error (MAE) as the performance
metric. Since, in practice, the true degrees-of-freedom is unknown, we it to vary over the grid
d=1,2,...,6. For instance, d = 1 corresponds to the “null” constant model and d = 2 represents
straight line forecasts. Thus for each value of SNR we produce a curve (MAE vs. degrees-of-

freedom). The results are presented in Figure , where we also add the baseline multi-response

regression solution as a reference (dashed red line).

SNR=0.1 SNR=0.5 SNR=1 SNR=2

log(test mae)

5 6 1 2 3
degrees—of-freedom

Figure 1: Simulation results. The solid black line represents the test MAE vs degrees-of-freedom
computed by means of the smooth MPF model. The red dashed line corresponds to the MRR
test score. Shaded regions represent 1SE interval computed across ten repeated simulations. Each

panel corresponds to the simulated data with different SNR levels.



According to the figure, for all SNR values the best smooth model outperforms the baseline,
although the amount of improvement degrades slightly as SNR increases. Regardless of the signal-
to-noise ratio, the minimum test score is achieved for the SMPF degrees-of-freedom around the
true model value d = 3. Note that as the degrees-of-freedom increases, the SMPF still outperforms
the Baseline, though setting d = 30 would necessarily result in identical performance. Therefore,
in the simulation experiment the smooth multi-period forecasting model not only demonstrates
the superior performance to the baseline method, but also is able to recover the true degrees-of-

freedom.

7 COVIDcast data experiments

Now we apply the multi-period forecasting approaches on the real data obtained from the Delphi
COVIDcast API (Reinhart et al.; 2021). This open-source data set, which is updated daily, tracks
multiple signals related to the spread and impact of the COVID-19 pandemic across the United
States on both county and state levels. It contains a wide variety of typical COVID-19 metrics
such as incident cases, deaths, and hospitalizations, as well as many unique indicators derived from
mobility data, internet symptom searches, healthcare utilization reports, and sample surveys. For

our experiments, we use three signals:

e confirmed 7dav_incidence_prop: the daily number of new confirmed COVID-19 cases

(computed per 100,000 people);

e smoothed cli: the estimated percentage of people with COVID-like illness, as measured by
The Delphi Group at Carnegie Mellon University U.S. COVID-19 Trends and Impact Survey
(CTIS), in partnership with Facebook (Salomon et al., 2021);

e smoothed hh cmnty cli: the estimated percentage of people reporting illness in their local

community, also measured by the Delphi US CTIS.

The latter two indicators were obtained from a voluntary survey conducted by Facebook. In order
to reduce the weekly variability, all three signals are smoothed by taking the trailing average across

a seven-day window. We consider the following forecast task:
e cach location 7 represents a U.S. county;

10



e the response Y;(t) is the value of confirmed 7dav_incidence _prop at county ¢;

e three predictive features are used, i.e. X;(t) = (X;1(t), Xi2(t), Xi3(t)) represents the values
of confirmed 7dav_incidence prop as well as smoothed cli and smoothed hh cmnty cli

at location i;
e ahead values A = {0,1,...,27} target daily forecast targets over four weeks;
e lag values L = {1,2,...,28} track the signal for four weeks preceding the forecast date.

The training set contains twelve weeks of daily data prior to 1 October 2021, that is
Tirain = {10-Jul-2021, 11-Jul-2021, ... 1-Oct-2021}.

To make the experiment more realistic, the data was downloaded “as reported on” 1 October
2021, thereby making all the signals after this date to be unobserved. In other words, Y;(t + a)
is unobserved, or equivalently, W;(t + a) = 0, if ¢ + a is any date after October 1. This practice
also means that any revisions that would eventually be made after October 1 are not available.
The distribution of missing response values for the training set is shown in blue in Figure 2 To
test both SMPF models with and without missingness (the solutions to Equations (7)) and (9)) we

explore two scenarios:

Scenario 1: we remove all data for dates that would result in at least one unobserved ahead
value, i.e. we use only the data from July 10 to September 4. In this case, the data is

complete and we can use non-weighted SMPF for prediction.

Scenario 2: we include all the data from July 10 to October 1. Since the response matrix is only

partially observed, we fit the weighted modification of SMPF with binary weights.

To make the solution more robust, among 581 counties with available survey data, we select the
300 with the highest average (across all the times) level of cases; we also remove all the observations
containing missing values in the predictors. This results in 23079 training observations and 84
predictors.

We fit both baseline and smooth MPF models on the training set. For the smooth approach
we use the orthogonal polynomial basis with intercept and vary the degrees-of-freedom in the grid

d=1,2,...,6. To evaluate the models’ performance we download the response values for the
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Figure 2: Schematic representation of missing values in response matrix when the “as of” date
is set to October 1. Each column represents a timestamp; each row represents an ahead value;
the element in row a column ¢ corresponds to the ¢ + a time point. Blue and red colors represent
train and test sets, respectively; light blue color corresponds the the time points after the “as of”
date, which are treated as unobserved in the training phase. If n = 1, i.e. only one location is
considered, then the picture represents exactly the distribution of missing values in train YT (the

blue block) joined with test YT (the red block).

same 300 counties and including four weeks of observations following October 1. In other words,

the new dataset contains the timestamps
Tiest = {2-Oct-2021, 3-Oct-2021, ..., 29-Oct-2021},

which results in 4780 test observations. Since we are interested in estimating how well the model
will do at forecasting the future cases, the test set is downloaded “as of” 27 January 2022 and
therefore there are no missing responses.

In Figure [3| we show test mean absolute error (MAE) for smooth MPF models with different
degrees-of-freedom (solid line). We also include baseline MAE as a reference (dashed line). Here,
the test MAE is averaged across all the locations, timestamps and ahead values. We start by
comparing two data scenarios (blue and red colors in the figure). According to the plot, using all

the data available before the “as of” date implies better test performance. This can be explained
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Figure 3: Comparing the test performance of the baseline and smooth MPF models while fore-
casting COVID-19. The data is downloaded “as of” October 1 and two scenarios are considered.
Red color: the training data contains only the timestamps with fully-observed response vector
(from July 10 to October 1), thus, the response matrix has no missing values. Blue color: the re-
sponse matrix includes all the available timestamps; thus, it has some missing values (blue curve).
The solid line shows the test MAE scores computed for the smooth MPF models with different
degrees-of-freedom, which vary in the grid d = 1,2,...,6. The dashed line represents the baseline
model MAE. The plot demonstrates the superior performance of the smooth model to the baseline

in both scenarios.

by the fact that COVID data is quite volatile, so including more recent observations allows the
model to more accurately predict the future trend. This, however, comes at a price of increased
computational cost. For a fully-observed response matrix the solution can be found via pre-
multiplying Y by H and fitting the multi-response regression with feature matrix X € R¥xm
and response matrix YH € RV At the same time, the partially observed case requires us
to solve a much larger regression problem with feature matrix H ® X € RV"™4 and response
y € R¥" Next, by comparing the smooth and baseline MPF test scores we conclude that
smoothing improves the performance of multi-period forecaster. From the red and blue curves in
Figure [3| one can infer that, for both scenarios, the optimal value for the degrees-of-freedom is

d = 3. The remaining results in this section are presented for the second data scenario, where the
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Figure 4: Comparing the test performance of the baseline and smooth MPF models while forecast-
ing COVID-19. The result is presented for the second scenario, i.e. when the all the timestamps
from July 10 to October 1 are included even if the response vector is partially observed. In this plot
the test MAE is calculated for each ahead value separately and each line corresponds to different
models (either baseline or smooth with d = 1,2,...,6). The plot demonstrates that forecasting is

more challenging for times which are further in the future.

response matrix is partially observed.

To get more granular information on the model performance, we compute MAE separately
for each column of Y and plot the dependence of test error on the ahead value. In Figure [ we
observe that, as one would expect, the accuracy decreases for larger ahead values for all models
under consideration. In other words, forecasting is more challenging for time points that are
farther into the future.

Finally, we compare baseline MPF with the best smooth model, i.e. the one that attains the
lowest test score. Note that d = 3 gives quadratic dependence of the regression coefficients on
time. Thus, the most promising approach is to predict some quadratic trend for cases at each
timestamp. In Figure [5[ each thin bright line starts at a timestamp and represents the predicted
cases for the coming four weeks (28 ahead values). Here, the top row shows the baseline predictions,
and the bottom row corresponds to those obtained by the optimal smooth model. To visualize

and compare the MPF performance on the train and test sets, we include both train (blue color)
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Figure 5: The plot displays the fits produced by the baseline and the optimal smooth model (with

d = 3). The bold dark line shows the true value whereas predicted values are represented by

bright thin lines (one line - one timestamp). Blue and red colors correspond to the train and test

sets, respectively. The baseline MPF fit demonstrates irregular behavior which is moderated by

smoothing.

and test (red color) fits to the plot. We also add the ground truth cases as a reference (dark bold
line). To make the figure more readable, we present the results only for the five counties with the
highest average case values and display each county in a separate panel. By analyzing this plot,
we can see that the baseline model produces fits which look more wiggly, or noisy, relative to the
smooth MPF prediction. This extra noise in the regression coefficients results in higher test MAE
of the baseline compared to the competitor. Note that when true cases are close to zero, MPF
may predict (impossible) negative values. One can easily fix this either by taking a log-transform

of cases or by imposing a constraint on the predicted values.
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8 Quantile forecasting

Now we shift from the point estimation task, which we handled by means of least squares regression,
to interval prediction. In this section, we employ quantile regression (QR) to estimate intervals
within which signals have a high probability of occurring (Koenker, [2005). We begin by introducing
the the baseline quantile multi-period forecasting (QMPF) method. For a quantile 7 € [0, 1]

consider the pinball loss function

(1—=7)(g—y) otherwise.

Then goal is to solve the following objective

mlmmlzez Z Z pT< (t+a) Z Z Xin(t —10) bkg(a)). (11)

bre(a)
=1 teT acA;( k=1 LeLy

Note that the above optimization task is stated in general form, where the set of ahead values can
vary for each timestamp ¢ and location i. We again assume A;(t) C A.

Similar to Section [5] the solution to the QMPF problem can be found separately for each
ahead value. Namely, for each a it amounts to fitting quantile regression with feature matrix X
and the response vector which includes all the observed elements from Y that corresponds to a.
As a result, each ahead value can be handled very efficiently by linear programming methods (see,
for example the software (Koenker, 2004))).

Incorporating the smoothness into the coefficients leads us immediately to the smooth version

of the QMPF objective

ZZ Z pT( t+a ZZsz@—g)Ze]kgh](&)), (12)

=1 teT aEA t) k=1 LeLy

which we aim to minimize w.r.t. ;5. By analogy with Section [5| the smooth problem can be
reduced to fitting a weighted QR through some simple manipulations with X, Y, H and ©. Specif-
ically, one can show that minimizing is equivalent to solving

Nng

i pr(yis X0 13
m;@ﬁ{%ml i (v, X7'0). (13)
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Here, y,w € RY" and 6 € R correspond to the vectors obtained by the concatenation of
columns of matrices Y, W and O7, respectively; W is the matrix of binary weights representing
the the missing responses in Y; and )Afl is the i-th row of X = H ® X.

Note that, unlike the multiple least squares case, where the computations can be significantly
simplified for fully-observed responses by pre-multiplying Y by H, the QR loss is not invariant un-
der the orthogonal transformations. Thus, computing the extended feature matrix X is necessary

for the smooth QMPF technique, regardless of the missingness pattern.

9 Quantile forecasting in COVIDcast study

We test both baseline and smooth QMPF techniques on the same COVIDcast data. We restrict our
investigation only to the second scenario with partially observed responses. In our experiments
we use three quantiles: 7 = 0.5 that corresponds to the predicted median value of cases and
7 = 0.2,0.8 that we use to compute lower and upper bounds for the predicted intervals. For
each 7 we solve the QMPF optimization problem and calculate the resulting fit according to @,
which we hereafter denote by }A/Z»T(t + a). We denote by M the number of observed responses, i.e.
M =73%"" > cr|Ai(t)], and track three performance metrics:

mean absolute error (MAE) Z Z Z (t+a) — Y25 (t +a) .,
i=1 teT acA;(
lower miscoverage rate (LMR) Z Z Z { (t+a) < YOt + a)} :
i=1 teT acA;(t)
upper miscoverage rate (UMR) Z Z Z { (t+a)> YOSt + a)} :

i=1 t€T acA;(t)

Here 1 {B} refers to the indicator function, taking the value 1 on the event B and 0 otherwise.
We evaluate these three metrics on the test set and present the results in Figure [0 According to
the upper left panel, the smooth model with the lowest MAE score has d = 3 degrees-of-freedom.
Despite implying that cases should be forecast in a simplistic quadratic fashion, it outperforms
the baseline model in terms of MAE. In the bottom left panel of the plot we show the miscoverage
rates obtained by 0.2 (green) and 0.8 (orange) quantiles. From this plot we can conclude that
smoothing not only decreases the mean absolute error, but also can be helpful in improving the

QMPF coverage, though this improvement is slight.
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Analogously to Figure [5, we also examine the fitted values obtained by the baseline and the
smooth QMPF model with three degrees-of-freedom. For simplicity, in Figure [6] we present the
forecasted values for one timestamp (i.e. October 2) and the twenty counties with the highest
average rate of cases. From the plot we can infer that for some counties, e.g. 01003 or 01097,
smoothing can improve the prediction accuracy, although for others, e.g. 45035 or 45063, the

difference is not considerable.

10 Conformal calibration

Note that for both 7 = 0.2,0.8 quantiles we expect to observe miscoverage of about 20%. Thus,
QMPF models demonstrate mild undercoverage by the lower bound and more sever overcoverage
by the upper one (see the left bottom panel of Figure @ In this section we apply calibration to
the QR model which allows us to improve the coverage on the test set.

Conformal quantile regression is a method for constructing prediction intervals that, without
making distributional assumptions, helps achieve proper coverage in finite samples (see, for ex-
ample, (Romano et al.l 2019))). The idea of this technique is to perform calibration of predicted
values on some independent set. Thus, as a first step we split out training data into two parts:
we refit the model on the first part and use the second one to calibrate the predicted cases. To
reduce the correlation between these parts, we hold out four weeks of the most recent timestamps

from Ti,a5, for calibration, i.e.

_ mfit cal
Tlﬁrain - T‘train U T‘train?

Tt = {10-Jul-2021, 11-Jul-2021, ..., 3-Sep-2021},
T = {4-Sep-2021, 5-Sep-2021, ..., 1-Oct-2021}.

After fitting QMPF models on T3, we use the resulting coefficients to evaluate the fits ?f (t+a)

train

as well as the upper and lower errors

E%?(t +a) = Y22 (t + a) — Y(t + a),

EY¥(t +a) = Yi(t +a) = V5 (t +a).
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Figure 6: Comparison of the test performance of the baseline and smooth QMPF models for
forecasting COVID-19. The plot represents the performance scores produced by the baseline
model (dashed line) and the smooth models with different degrees-of-freedom (solid line). The
upper plot shows the MAE score whereas the bottom plot shows the upper (orange) and lower
(green) miscoverage rates. The target miscoverage rate is 20%. The left panel of each plot shows
the performance of QMPF before conformal calibration, whereas the right panel represents the
calibrated test scores. The plot demonstrates improved performance of the smooth model relative

to the baseline.
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Figure 7: Comparison of the test predictions of the baseline and smooth QMPF models for fore-

casting COVID-19. The plot displays the out-of-sample fits produced by the baseline (purple) and

the best smooth model with d = 3 (green). The fits are presented only for October 2. The bold

black line shows the true observed newly reported cases, whereas predicted values are represented

by thin colored lines. The prediction interval obtained by 0.2 and 0.8 quantiles is also displayed

(shaded region).




Then, we usey 7<% to calculate the margins

train

Q%% = 0.8-th empirical quantile of {E>?(t +a):i € [n], a € A, t € T

train J »

Q%% = 0.8-th empirical quantile of {E>®(t+a): i € [n], a € A, t € T

train J »

and replace the original prediction interval [Y02(t + a), Y #(t + a)] with its calibrated version
YO2(t+a) — Q2 Y5t + a) + Q.

We display the performance of QMPF after calibration in the right panel of Figure [f] As
one can see from the bottom right panel of the plot, the procedure considerably improves the
coverage, which is now much closer to the reference 20%. According to the upper right panel,
the optimal smooth model has d = 2 degrees-of-freedom, suggesting forecasting a linear trend for
cases. Finally, analyzing both panels, we conclude that, even for calibrated models, the smoothing

technique still outperforms the baseline method on the test set.

11 Discussion

In this paper, we proposed a time-series forecasting approach intended to predict multiple “ahead”
values of the signal simultaneously. The baseline method, commonly used in the literature, sug-
gests treating each ahead value independently, thereby fitting several separate models. On the
contrary, the smooth MPF technique takes into account that the same signal measured at differ-
ent time points in the forecasting model. It assumes that the model coefficients depend smoothly
on time, thereby forecasting multiple ahead values with a single smooth curve. We develop the
proposed approach in a least-squares framework, which can be handled easily by multiple linear
regression. Subsequently, we extend the methodology to forecasting the prediction intervals via
quantile regression. We illustrate the benefits of smoothing in the context of multi-period fore-
casting through a small simulation as well as on an example using county-level COVID-19 incident
cases.

There remains additional opportunity for future work. In the current study, we consider a
limited set of predictors: cases, estimated percentage of people experiencing COVID-like illness,
and the proportion of people reporting illness in their local community. One interesting direction
would be to extend this set and include additional indicators from the COVIDcast database such

as social behavior or mobility data. From the methodological point of view, this would require
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us to develop an efficient way to combine smooth multi-period forecasting with regularization.
For instance, smooth structure in the coefficients can be handled by group-type penalties such as

group-lasso.
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SUPPLEMENTAL MATERIALS

Data: The data used for the COVID-19 experiments was downloaded from the COVIDcast API

https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html

Code: The code for the proposed methodologies is available at GitHub

https://github.com/ElenaTuzhilina/MPF\
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