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1 Introduction

Time series forecasting techniques are used to predict events that occur over time by analyzing

trends and patterns in past data. They are widely applicable across many fields of including

finance, economics, politics, sports, meteorology and epidemiology. The latter area became espe-

cially important since the beginning of the COVID-19 pandemic in December 2019.

Several time-series forecasting techniques have been proposed in the literature. Standard

statistical methods based on regressive models such as autoregressive (AR), moving average (MA),

autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) have

been commonly used to forecast time-series (Box and Jenkins, 1976). These Box-Jenkins methods

are particularly efficient when applied to a linear stationary time series; they can accommodate

the non-linear case by applying some appropriate transformation first. More recent approaches

are based on machine learning methods, in particular, artificial neural networks (Zhang et al.,

1998; Ahmed et al., 2010; Makridakis et al., 2018). Compared to the ARIMA-type models, these

often demonstrate better performance in forecasting non-linear signals.

The standard application of these techniques aims to predict the signal for a single forecast

horizon (or ”ahead”), most often one-step-ahead. However, in some applications such as epidemi-

ology, where decisions are often based on the future trend of signal, simultaneous forecasts for

multiple aheads can be of great interest. One of the popular methods for predicting several ahead

values is multi-stage prediction (MSP) or multi-period forecasting (MFP) (Chen et al., 2004). This

approach is usually based on a single output model which is applied recursively, i.e. the predicted

value of the signal three weeks ahead is determined based on the already-produced predicted

values for one and two weeks ahead. The main disadvantages of such an iterative procedure is

error propagation. An alternative method suggested in the literature is called the multiple-input

multiple-output approach (MIMO), which aims to predict a vector of future values all at once (Bon-

tempi, 2008; Ben Taieb et al., 2010). Detailed comparisons between different MIMO techniques

can be found in (Cheng et al., 2006; An and Anh, 2015).

In this study we introduce a novel approach for predicting multiple ahead values simultaneously

which is based on the idea that the future signal can be well-approximated by a smooth curve.

The rest of the paper is organized as follows. In Section 2 we introduce the general multi-period

forecasting problem. In Sections 3–4 we describe two regression-based approaches for solving it:
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• a simple baseline method that predicts all aheads independently of each other (often termed

“direct” forecasting);

• and a novel MPF method that enforces smoothness across aheads.

We extend the methodology to the case that some of the response signals are unobserved in

Section 5 and propose an analogue based on quantile-regression in Section 8. Sections 6, 7 and

9 illustrate the MPF technique on a small simulation example as well as real COVID-19 case

incidence data obtained from the Delphi Epidata CovidCAST API (Reinhart et al., 2021). We

conclude the paper with a Discussion where we suggest some future research directions.

2 Forecasting problem

In this section we state the general multi-period forecasting problem. The aim is to predict

multiple future values of a time-dependant variable using a set of features (also depending on

time). We begin by introducing some notation. Suppose that we measure a response variable

Yi(t) and a vector of p covariates Xi(t) =
(
Xi1(t), . . . , Xip(t)

)
at time t and location i. Denote

by A = {a1, . . . , aq} ∈ Rq
≥0 the sorted set of target ahead values for the response variable; Lk =

{ℓk1, . . . , ℓkmk
} ∈ Rmk

>0 a set of “lags” for the k-th predictor; and L = {L1, . . . , Lp} a list of lags

for all the covariates. Then the goal of multi-period forecasting (MPF) is to predict the response

variable for all the aheads, i.e.

Yi(t+ A) =
(
Yi(t+ a1), . . . , Yi(t+ aq)

)
∈ Rq,

using all the lagged features at location i, i.e.

Xi(t− L) =
(
Xi1(t− L1), . . . , Xip(t− Lp)

)
∈ Rm.

Here, by analogy with the response,

Xik(t− Lk) =
(
Xik(t− ℓk1), . . . , Xik(t− ℓkmk

)
)
∈ Rmk

represents the lagged values of the k-th predictor at location i and m =
∑p

k=1mk corresponds to

the total number of lagged predictors.
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A simple example of an MPF problem is: on December 15, predict the expected number of

newly reported of COVID-19 cases on December 15 and December 22 using the number of visits

to the doctor on December 8 and December 1 across all the U.S. states. In this case,

• t is December 15, the forecast date;

• i represents a U.S. state;

• Yi(t) is the number of COVID-19 cases in state i on day t;

• Xi(t) =
(
Xi1(t)

)
represents the number of doctor visits in state i on day t;

• A = {0, 7} is the set of ahead values;

• L1 = {7, 14} is the set of lags.

Note that in many applications the response variable is also included in the set of predictors,

thereby incorporating the historical values of the response into the feature set.

3 Baseline linear model

A straightforward (direct) multi-period forecaster is a linear model for each location i, timestamp

t and ahead value a:

Yi(t+ a) =

p∑
k=1

∑
ℓ∈Lk

Xik(t− ℓ) bkℓ(a) + ϵi(t+ a). (1)

Here ϵi(t + a) ∼ N (0, σ2) are i.i.d errors and bkℓ(a) are unknown model coefficients. In what

follows, we assume that the measurements are done at n locations and that multiple past values

are available. If we denote the set of the available past timestamps by T = {t1, . . . , tN} then

model (1) leads us to the following objective

n∑
i=1

∑
t∈T

∑
a∈A

(
Yi(t+ a)−

p∑
k=1

∑
ℓ∈Lk

Xik(t− ℓ) bkℓ(a)

)2

(2)

that we aim to minimize w.r.t. the model coefficients. We note that the resulting optimization goal

is nothing but a multivariate least-squares problem: the loss is separable in terms of ahead values,
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so bkℓ(a) can be found independently for each a ∈ A via ordinary least squares with response

Yi(t+ a) and predictors Xi(t− L).

For convenience we will restate the objective in matrix form. To do so, we first denote all the

coefficients corresponding to the k-th predictor by

bk(a) =
(
bkℓk1(a), . . . , bkℓkmk

(a)
)
∈ Rmk

and form the coefficient matrix

B =


b1(a1) · · · bp(a1)

...
. . .

...

b1(aq) · · · bp(aq)

 ∈ Rq×m.

Next, we denote the matrices of the response and the predictors measured at time t by

Y (t) =


Y1(t+ A)

...

Yn(t+ A)

 ∈ Rn×q and X(t) =


X1(t− L)

...

Xn(t− L)

 ∈ Rn×m

and concatenate all the data rowwise into

Y =


Y (t1)

...

Y (tN)

 ∈ RNn×q and X =


X(t1)

...

X(tN)

 ∈ RNn×m.

Hence, the MPF optimization problem in Equation 2 can be stated in multi-response regression

(MRR) form as

minimize
B∈Rm×q

∥Y −XBT∥2F , (3)

where ∥Z∥2F =
∑

ij Z
2
ij is the squared Frobenius norm of a matrix Z. The explicit solution can be

found via the formula

B̂T = (XTX)−1XTY.

We will refer to this forecaster as the Baseline MPF.
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4 Smoothing constraint

The main disadvantage of the Baseline model (3) is that the coefficients for all the response

columns are computed independently of each other. In other words, the model completely ignores

the underlying data structure, i.e. that each column of Y represents the same signal measured

for different ahead values. To incorporate this information into the MPF problem we desire some

smoothness in the model coefficients.

Specifically, we desire that each bkℓ(a) is a smooth function of ahead values. Such smoothness

can be enforced by requiring B to be representable as a linear combination of smooth basis

functions h1(a), . . . , hd(a) (e.g. a spline or polynomial). This suggests the representation

bkℓ(a) =
d∑

j=1

θjkℓhj(a) for some θjkℓ ∈ R. (4)

Here d is a hyperparameter that controls the flexibility of bkℓ(a). In what follows, we refer to d as

the degrees-of-freedom. Combining (2) with (4) leads us to the smooth multi-period forecasting

(SMPF) objective

minimize
θjkℓ, ∀j,k,ℓ

n∑
i=1

∑
t∈T

∑
a∈A

(
Yi(t+ a)−

p∑
k=1

∑
ℓ∈Lk

Xik(t− ℓ)
d∑

j=1

θjkℓhj(a)

)2

. (5)

Note that the second term in (5) involves all the unknown parameters θjkℓ of the model, so the

resulting loss function is no longer separable. However, since the predicted values

Ŷi(t+ a) =

p∑
k=1

∑
ℓ∈Lk

Xik(t− ℓ)
d∑

j=1

θjkℓhj(a) (6)

is a linear function of the coefficients it is still possible to find the explicit solution via regression.

Again, it is convenient to rewrite the loss function in matrix form. To do so, we first store all

the coefficients in a matrix

Θ =


θ11 . . . θ1p

. . . . . . . . .

θd1 . . . θdp

 ∈ Rd×m, where θjk = (θjkℓk1 , . . . , θjkℓkmk
) ∈ Rmk .
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Next, we introduce the basis matrix

H =


h1(a1) . . . hd(a1)

. . . . . . . . .

h1(aq) . . . hd(aq)

 ∈ Rq×d,

where each column represents a function from the basis evaluated at all ahead values in A. As

a result, one can restate constraint (4) in matrix form as B = HΘ and, together with (3), this

implies the SMPF optimization can be written as

minimize
Θ∈Rd×m

∥Y −XΘTHT∥2F . (7)

Note that in this problem the basis H is considered to be fixed, so the only unknown parameter is

Θ. The degrees-of-freedom d, which controls the size of the basis, is the model’s hyperparameter

and can be chosen from a grid of values via cross-validation.

Similar to the baseline model, it is possible to find an explicit solution to (7). First, without

loss of generality, we assume that H has orthogonal columns. Otherwise, one can take the QR

decomposition H = QR and apply the change of variables H̃ = Q and Θ̃ = RΘ. Next, since the

Frobenius norm is invariant under orthogonal transformations we can restate problem (7) as

minimize
Θ∈Rd×m

∥Y H −XΘT∥2F ,

which is, again, a multi-response regression problem with solution

Θ̂T = (XTX)−1XTY H.

5 Missing values

This section extends the SMPF methodology proposed in Section 4 to the case when only part of

the response matrix Y is observed. In forecasting applications, missing values often occur. For

example, for a recent time t and location i we may not have observed response values Yi(t + a)

for all ahead values a ∈ A as some of them have not occurred yet. Moreover, the data can be

updated at different times for different locations; thus, Yi(t+ a) may not have been collected yet

for some i.
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To handle unobserved values we allow the set of ahead values to depend on the timestamp

t and location i and denote it by Ai(t). We also assume that each Ai(t) is a subset of original

A = {a1, . . . , aq}. One can derive the new loss function as follows

n∑
i=1

∑
t∈T

∑
a∈Ai(t)

(
Yi(t+ a)−

p∑
k=1

∑
ℓ∈Lk

Xik(t− ℓ)
d∑

j=1

θjkℓhj(a)

)2

. (8)

Similar to Sections 3–4, it is not hard to restate the SMPF optimization problem in matrix

form. Defining

Wi(t+ a) =

1 if a ∈ Ai(t),

0 otherwise,

to be a binary weight matrix representing the missingness of the response, then minimizing Equa-

tion (8) is equivalent to solving

minimize
Θ∈Rd×m

∥W ◦ (Y −XΘTHT)∥2F , (9)

where ◦ refers to the element-wise Hadamard matrix product and W is the matrix containing all

the weights.

Unlike the unweighted case, weighted SMPF cannot be reduced to a multi-response regression

by simple manipulations with Frobenius norm. However, since the second term in (9) is a linear

function of Θ it is still possible to restate it as an expanded ordinary least squares problem. Denote

w, y ∈ RNnq and θ ∈ Rdm the vectors obtained by the concatenation of columns of matrices W,Y

and ΘT, respectively. Writing X̃ = H ⊗ X as the Kronecker product between H and X, then

Equation (9) is equivalent to solving

minimize
θ∈Rdm

∥w ◦ (y − X̃θ)∥22. (10)

Note that for general w the solution can be found by means of the weighted regression with weights

w, response y and feature matrix X̃. However, if the weights are binary one can simply remove

the rows in y and X̃, that correspond to the zero weights, and use simple linear regression.

6 Simulation experiment

In this section we test the SMPF model from Section 5 on a small simulation example. For

simplicity we use only one forecast date t and denote it as t = 0. We fix the number of locations
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at n = 1000 and the number of predictors at p = 10. We also assume no lags for this model, i.e.

Lk = {0} for k = 1, . . . , 10. We first generate the matrix of covariates X ∈ Rn×p with elements

Xik ∼ N (0, 1). Further, we set the number of ahead values to q = 30 and the set of ahead

values to A = {0, 1, . . . , 29}. To create B we evaluate orthogonal quadratic polynomial basis at

all elements in A and store them column-wise as H ∈ Rq×d. Here d = 3 and each column of H

represents a basis function, including the intercept. Next, we draw the elements of the coefficient

matrix Θ ∈ Rd×m from standard normal distribution. Finally, we generate the matrix of errors

E ∈ Rn×q with elements ϵi,j ∼ N (0, σ2) and compute the response matrix as Y = XΘTHT + E.

We randomly sample 10% of the Y matrix elements and treat them as unobserved.

We use half of the locations to fit the smooth multi-period forecasting model and the remaining

half to evaluate the model performance. We vary the error variance σ2 such that the signal-to-

noise ratio is SNR = 0.1, 0.5, 1, 2, and we use mean absolute error (MAE) as the performance

metric. Since, in practice, the true degrees-of-freedom is unknown, we it to vary over the grid

d = 1, 2, . . . , 6. For instance, d = 1 corresponds to the “null” constant model and d = 2 represents

straight line forecasts. Thus for each value of SNR we produce a curve (MAE vs. degrees-of-

freedom). The results are presented in Figure 1, where we also add the baseline multi-response

regression solution as a reference (dashed red line).

SNR = 0.1 SNR = 0.5 SNR = 1 SNR = 2

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

−3

−2

−1

degrees−of−freedom

lo
g(

te
st

 m
ae

)

Figure 1: Simulation results. The solid black line represents the test MAE vs degrees-of-freedom

computed by means of the smooth MPF model. The red dashed line corresponds to the MRR

test score. Shaded regions represent 1SE interval computed across ten repeated simulations. Each

panel corresponds to the simulated data with different SNR levels.
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According to the figure, for all SNR values the best smooth model outperforms the baseline,

although the amount of improvement degrades slightly as SNR increases. Regardless of the signal-

to-noise ratio, the minimum test score is achieved for the SMPF degrees-of-freedom around the

true model value d = 3. Note that as the degrees-of-freedom increases, the SMPF still outperforms

the Baseline, though setting d = 30 would necessarily result in identical performance. Therefore,

in the simulation experiment the smooth multi-period forecasting model not only demonstrates

the superior performance to the baseline method, but also is able to recover the true degrees-of-

freedom.

7 COVIDcast data experiments

Now we apply the multi-period forecasting approaches on the real data obtained from the Delphi

COVIDcast API (Reinhart et al., 2021). This open-source data set, which is updated daily, tracks

multiple signals related to the spread and impact of the COVID-19 pandemic across the United

States on both county and state levels. It contains a wide variety of typical COVID-19 metrics

such as incident cases, deaths, and hospitalizations, as well as many unique indicators derived from

mobility data, internet symptom searches, healthcare utilization reports, and sample surveys. For

our experiments, we use three signals:

• confirmed 7dav incidence prop: the daily number of new confirmed COVID-19 cases

(computed per 100,000 people);

• smoothed cli: the estimated percentage of people with COVID-like illness, as measured by

The Delphi Group at Carnegie Mellon University U.S. COVID-19 Trends and Impact Survey

(CTIS), in partnership with Facebook (Salomon et al., 2021);

• smoothed hh cmnty cli: the estimated percentage of people reporting illness in their local

community, also measured by the Delphi US CTIS.

The latter two indicators were obtained from a voluntary survey conducted by Facebook. In order

to reduce the weekly variability, all three signals are smoothed by taking the trailing average across

a seven-day window. We consider the following forecast task:

• each location i represents a U.S. county;
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• the response Yi(t) is the value of confirmed 7dav incidence prop at county i;

• three predictive features are used, i.e. Xi(t) = (Xi1(t), Xi2(t), Xi3(t)) represents the values

of confirmed 7dav incidence prop as well as smoothed cli and smoothed hh cmnty cli

at location i;

• ahead values A = {0, 1, . . . , 27} target daily forecast targets over four weeks;

• lag values L = {1, 2, . . . , 28} track the signal for four weeks preceding the forecast date.

The training set contains twelve weeks of daily data prior to 1 October 2021, that is

Ttrain = {10-Jul-2021, 11-Jul-2021, . . . 1-Oct-2021}.

To make the experiment more realistic, the data was downloaded “as reported on” 1 October

2021, thereby making all the signals after this date to be unobserved. In other words, Yi(t + a)

is unobserved, or equivalently, Wi(t + a) = 0, if t + a is any date after October 1. This practice

also means that any revisions that would eventually be made after October 1 are not available.

The distribution of missing response values for the training set is shown in blue in Figure 2. To

test both SMPF models with and without missingness (the solutions to Equations (7) and (9)) we

explore two scenarios:

Scenario 1: we remove all data for dates that would result in at least one unobserved ahead

value, i.e. we use only the data from July 10 to September 4. In this case, the data is

complete and we can use non-weighted SMPF for prediction.

Scenario 2: we include all the data from July 10 to October 1. Since the response matrix is only

partially observed, we fit the weighted modification of SMPF with binary weights.

To make the solution more robust, among 581 counties with available survey data, we select the

300 with the highest average (across all the times) level of cases; we also remove all the observations

containing missing values in the predictors. This results in 23079 training observations and 84

predictors.

We fit both baseline and smooth MPF models on the training set. For the smooth approach

we use the orthogonal polynomial basis with intercept and vary the degrees-of-freedom in the grid

d = 1, 2, . . . , 6. To evaluate the models’ performance we download the response values for the
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Figure 2: Schematic representation of missing values in response matrix when the “as of” date

is set to October 1. Each column represents a timestamp; each row represents an ahead value;

the element in row a column t corresponds to the t+ a time point. Blue and red colors represent

train and test sets, respectively; light blue color corresponds the the time points after the “as of”

date, which are treated as unobserved in the training phase. If n = 1, i.e. only one location is

considered, then the picture represents exactly the distribution of missing values in train Y T (the

blue block) joined with test Y T (the red block).

same 300 counties and including four weeks of observations following October 1. In other words,

the new dataset contains the timestamps

Ttest = {2-Oct-2021, 3-Oct-2021, . . . , 29-Oct-2021},

which results in 4780 test observations. Since we are interested in estimating how well the model

will do at forecasting the future cases, the test set is downloaded “as of” 27 January 2022 and

therefore there are no missing responses.

In Figure 3 we show test mean absolute error (MAE) for smooth MPF models with different

degrees-of-freedom (solid line). We also include baseline MAE as a reference (dashed line). Here,

the test MAE is averaged across all the locations, timestamps and ahead values. We start by

comparing two data scenarios (blue and red colors in the figure). According to the plot, using all

the data available before the “as of” date implies better test performance. This can be explained
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Figure 3: Comparing the test performance of the baseline and smooth MPF models while fore-

casting COVID-19. The data is downloaded “as of” October 1 and two scenarios are considered.

Red color: the training data contains only the timestamps with fully-observed response vector

(from July 10 to October 1), thus, the response matrix has no missing values. Blue color: the re-

sponse matrix includes all the available timestamps; thus, it has some missing values (blue curve).

The solid line shows the test MAE scores computed for the smooth MPF models with different

degrees-of-freedom, which vary in the grid d = 1, 2, . . . , 6. The dashed line represents the baseline

model MAE. The plot demonstrates the superior performance of the smooth model to the baseline

in both scenarios.

by the fact that COVID data is quite volatile, so including more recent observations allows the

model to more accurately predict the future trend. This, however, comes at a price of increased

computational cost. For a fully-observed response matrix the solution can be found via pre-

multiplying Y by H and fitting the multi-response regression with feature matrix X ∈ RNn×m

and response matrix Y H ∈ RNn×d. At the same time, the partially observed case requires us

to solve a much larger regression problem with feature matrix H ⊗ X ∈ RNnq×md and response

y ∈ RNnq. Next, by comparing the smooth and baseline MPF test scores we conclude that

smoothing improves the performance of multi-period forecaster. From the red and blue curves in

Figure 3 one can infer that, for both scenarios, the optimal value for the degrees-of-freedom is

d = 3. The remaining results in this section are presented for the second data scenario, where the
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Figure 4: Comparing the test performance of the baseline and smooth MPF models while forecast-

ing COVID-19. The result is presented for the second scenario, i.e. when the all the timestamps

from July 10 to October 1 are included even if the response vector is partially observed. In this plot

the test MAE is calculated for each ahead value separately and each line corresponds to different

models (either baseline or smooth with d = 1, 2, . . . , 6). The plot demonstrates that forecasting is

more challenging for times which are further in the future.

response matrix is partially observed.

To get more granular information on the model performance, we compute MAE separately

for each column of Y and plot the dependence of test error on the ahead value. In Figure 4 we

observe that, as one would expect, the accuracy decreases for larger ahead values for all models

under consideration. In other words, forecasting is more challenging for time points that are

farther into the future.

Finally, we compare baseline MPF with the best smooth model, i.e. the one that attains the

lowest test score. Note that d = 3 gives quadratic dependence of the regression coefficients on

time. Thus, the most promising approach is to predict some quadratic trend for cases at each

timestamp. In Figure 5 each thin bright line starts at a timestamp and represents the predicted

cases for the coming four weeks (28 ahead values). Here, the top row shows the baseline predictions,

and the bottom row corresponds to those obtained by the optimal smooth model. To visualize

and compare the MPF performance on the train and test sets, we include both train (blue color)
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Figure 5: The plot displays the fits produced by the baseline and the optimal smooth model (with

d = 3). The bold dark line shows the true value whereas predicted values are represented by

bright thin lines (one line - one timestamp). Blue and red colors correspond to the train and test

sets, respectively. The baseline MPF fit demonstrates irregular behavior which is moderated by

smoothing.

and test (red color) fits to the plot. We also add the ground truth cases as a reference (dark bold

line). To make the figure more readable, we present the results only for the five counties with the

highest average case values and display each county in a separate panel. By analyzing this plot,

we can see that the baseline model produces fits which look more wiggly, or noisy, relative to the

smooth MPF prediction. This extra noise in the regression coefficients results in higher test MAE

of the baseline compared to the competitor. Note that when true cases are close to zero, MPF

may predict (impossible) negative values. One can easily fix this either by taking a log-transform

of cases or by imposing a constraint on the predicted values.
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8 Quantile forecasting

Now we shift from the point estimation task, which we handled by means of least squares regression,

to interval prediction. In this section, we employ quantile regression (QR) to estimate intervals

within which signals have a high probability of occurring (Koenker, 2005). We begin by introducing

the the baseline quantile multi-period forecasting (QMPF) method. For a quantile τ ∈ [0, 1]

consider the pinball loss function

ρτ (y, ŷ) =

τ(y − ŷ) if y ≥ ŷ,

(1− τ)(ŷ − y) otherwise.

Then goal is to solve the following objective

minimize
bkℓ(a)

n∑
i=1

∑
t∈T

∑
a∈Ai(t)

ρτ

(
Yi(t+ a),

p∑
k=1

∑
ℓ∈Lk

Xik(t− ℓ) bkℓ(a)

)
. (11)

Note that the above optimization task is stated in general form, where the set of ahead values can

vary for each timestamp t and location i. We again assume Ai(t) ⊆ A.

Similar to Section 5, the solution to the QMPF problem can be found separately for each

ahead value. Namely, for each a it amounts to fitting quantile regression with feature matrix X

and the response vector which includes all the observed elements from Y that corresponds to a.

As a result, each ahead value can be handled very efficiently by linear programming methods (see,

for example the software (Koenker, 2004)).

Incorporating the smoothness into the coefficients leads us immediately to the smooth version

of the QMPF objective

n∑
i=1

∑
t∈T

∑
a∈Ai(t)

ρτ

(
Yi(t+ a),

p∑
k=1

∑
ℓ∈Lk

Xik(t− ℓ)
d∑

j=1

θjkℓhj(a)

)
, (12)

which we aim to minimize w.r.t. θjkℓ. By analogy with Section 5, the smooth problem can be

reduced to fitting a weighted QR through some simple manipulations with X, Y,H and Θ. Specif-

ically, one can show that minimizing (12) is equivalent to solving

minimize
θ∈Rdm

Nnq∑
i=1

wi · ρτ
(
yi, X̃T

i θ
)
. (13)
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Here, y, w ∈ RNnq and θ ∈ Rdm correspond to the vectors obtained by the concatenation of

columns of matrices Y,W and ΘT, respectively; W is the matrix of binary weights representing

the the missing responses in Y ; and X̃i is the i-th row of X̃ = H ⊗X.

Note that, unlike the multiple least squares case, where the computations can be significantly

simplified for fully-observed responses by pre-multiplying Y by H, the QR loss is not invariant un-

der the orthogonal transformations. Thus, computing the extended feature matrix X̃ is necessary

for the smooth QMPF technique, regardless of the missingness pattern.

9 Quantile forecasting in COVIDcast study

We test both baseline and smooth QMPF techniques on the same COVIDcast data. We restrict our

investigation only to the second scenario with partially observed responses. In our experiments

we use three quantiles: τ = 0.5 that corresponds to the predicted median value of cases and

τ = 0.2, 0.8 that we use to compute lower and upper bounds for the predicted intervals. For

each τ we solve the QMPF optimization problem and calculate the resulting fit according to (6),

which we hereafter denote by Ŷ τ
i (t+ a). We denote by M the number of observed responses, i.e.

M =
∑n

i=1

∑
t∈T |Ai(t)|, and track three performance metrics:

mean absolute error (MAE) =
1

M

n∑
i=1

∑
t∈T

∑
a∈Ai(t)

∣∣Yi(t+ a)− Ŷ 0.5
i (t+ a)

∣∣,
lower miscoverage rate (LMR) =

1

M

n∑
i=1

∑
t∈T

∑
a∈Ai(t)

1
{
Yi(t+ a) < Ŷ 0.2

i (t+ a)
}
,

upper miscoverage rate (UMR) =
1

M

n∑
i=1

∑
t∈T

∑
a∈Ai(t)

1
{
Yi(t+ a) > Ŷ 0.8

i (t+ a)
}
.

Here 1 {B} refers to the indicator function, taking the value 1 on the event B and 0 otherwise.

We evaluate these three metrics on the test set and present the results in Figure 6. According to

the upper left panel, the smooth model with the lowest MAE score has d = 3 degrees-of-freedom.

Despite implying that cases should be forecast in a simplistic quadratic fashion, it outperforms

the baseline model in terms of MAE. In the bottom left panel of the plot we show the miscoverage

rates obtained by 0.2 (green) and 0.8 (orange) quantiles. From this plot we can conclude that

smoothing not only decreases the mean absolute error, but also can be helpful in improving the

QMPF coverage, though this improvement is slight.
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Analogously to Figure 5, we also examine the fitted values obtained by the baseline and the

smooth QMPF model with three degrees-of-freedom. For simplicity, in Figure 6 we present the

forecasted values for one timestamp (i.e. October 2) and the twenty counties with the highest

average rate of cases. From the plot we can infer that for some counties, e.g. 01003 or 01097,

smoothing can improve the prediction accuracy, although for others, e.g. 45035 or 45063, the

difference is not considerable.

10 Conformal calibration

Note that for both τ = 0.2, 0.8 quantiles we expect to observe miscoverage of about 20%. Thus,

QMPF models demonstrate mild undercoverage by the lower bound and more sever overcoverage

by the upper one (see the left bottom panel of Figure 6). In this section we apply calibration to

the QR model which allows us to improve the coverage on the test set.

Conformal quantile regression is a method for constructing prediction intervals that, without

making distributional assumptions, helps achieve proper coverage in finite samples (see, for ex-

ample, (Romano et al., 2019)). The idea of this technique is to perform calibration of predicted

values on some independent set. Thus, as a first step we split out training data into two parts:

we refit the model on the first part and use the second one to calibrate the predicted cases. To

reduce the correlation between these parts, we hold out four weeks of the most recent timestamps

from Ttrain for calibration, i.e.

Ttrain = T fit
train

⋃
T cal
train,

T fit
train = {10-Jul-2021, 11-Jul-2021, . . . , 3-Sep-2021},

T cal
train = {4-Sep-2021, 5-Sep-2021, . . . , 1-Oct-2021}.

After fitting QMPF models on T fit
train we use the resulting coefficients to evaluate the fits Ŷ τ

i (t+ a)

as well as the upper and lower errors

E0.2
i (t+ a) = Ŷ 0.2

i (t+ a)− Yi(t+ a),

E0.8
i (t+ a) = Yi(t+ a)− Ŷ 0.8

i (t+ a).
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Figure 6: Comparison of the test performance of the baseline and smooth QMPF models for

forecasting COVID-19. The plot represents the performance scores produced by the baseline

model (dashed line) and the smooth models with different degrees-of-freedom (solid line). The

upper plot shows the MAE score whereas the bottom plot shows the upper (orange) and lower

(green) miscoverage rates. The target miscoverage rate is 20%. The left panel of each plot shows

the performance of QMPF before conformal calibration, whereas the right panel represents the

calibrated test scores. The plot demonstrates improved performance of the smooth model relative

to the baseline.
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Figure 7: Comparison of the test predictions of the baseline and smooth QMPF models for fore-

casting COVID-19. The plot displays the out-of-sample fits produced by the baseline (purple) and

the best smooth model with d = 3 (green). The fits are presented only for October 2. The bold

black line shows the true observed newly reported cases, whereas predicted values are represented

by thin colored lines. The prediction interval obtained by 0.2 and 0.8 quantiles is also displayed

(shaded region).
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Then, we usey T cal
train to calculate the margins

Q0.2 = 0.8-th empirical quantile of {E0.2
i (t+ a) : i ∈ [n], a ∈ A, t ∈ T cal

train},

Q0.8 = 0.8-th empirical quantile of {E0.8
i (t+ a) : i ∈ [n], a ∈ A, t ∈ T cal

train},

and replace the original prediction interval [Ŷ 0.2
i (t + a), Ŷ 0.8

i (t + a)] with its calibrated version

[Ŷ 0.2
i (t+ a)−Q0.2, Ŷ 0.8

i (t+ a) +Q0.8].

We display the performance of QMPF after calibration in the right panel of Figure 6. As

one can see from the bottom right panel of the plot, the procedure considerably improves the

coverage, which is now much closer to the reference 20%. According to the upper right panel,

the optimal smooth model has d = 2 degrees-of-freedom, suggesting forecasting a linear trend for

cases. Finally, analyzing both panels, we conclude that, even for calibrated models, the smoothing

technique still outperforms the baseline method on the test set.

11 Discussion

In this paper, we proposed a time-series forecasting approach intended to predict multiple “ahead”

values of the signal simultaneously. The baseline method, commonly used in the literature, sug-

gests treating each ahead value independently, thereby fitting several separate models. On the

contrary, the smooth MPF technique takes into account that the same signal measured at differ-

ent time points in the forecasting model. It assumes that the model coefficients depend smoothly

on time, thereby forecasting multiple ahead values with a single smooth curve. We develop the

proposed approach in a least-squares framework, which can be handled easily by multiple linear

regression. Subsequently, we extend the methodology to forecasting the prediction intervals via

quantile regression. We illustrate the benefits of smoothing in the context of multi-period fore-

casting through a small simulation as well as on an example using county-level COVID-19 incident

cases.

There remains additional opportunity for future work. In the current study, we consider a

limited set of predictors: cases, estimated percentage of people experiencing COVID-like illness,

and the proportion of people reporting illness in their local community. One interesting direction

would be to extend this set and include additional indicators from the COVIDcast database such

as social behavior or mobility data. From the methodological point of view, this would require
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us to develop an efficient way to combine smooth multi-period forecasting with regularization.

For instance, smooth structure in the coefficients can be handled by group-type penalties such as

group-lasso.
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SUPPLEMENTAL MATERIALS

Data: The data used for the COVID-19 experiments was downloaded from the COVIDcast API

https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html

Code: The code for the proposed methodologies is available at GitHub

https://github.com/ElenaTuzhilina/MPF.
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