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Reconstructing three dimensional (3D) chromatin structure from confor-
mation capture assays (such as Hi-C) is a critical task in computational biol-
ogy, since chromatin spatial architecture plays a vital role in numerous cellu-
lar processes and direct imaging is challenging. Most existing algorithms that
operate on Hi-C contact matrices produce reconstructed 3D configurations in
the form of a polygonal chain. However, none of the methods exploit the fact
that the target solution is a (smooth) curve in 3D: this contiguity attribute is
either ignored or indirectly addressed by imposing spatial constraints that
are challenging to formulate. In this paper we develop both B-spline and
smoothing spline techniques for directly capturing this potentially complex
1D curve. We subsequently combine these techniques with a Poisson model
for contact counts and compare their performance on a real data example.
In addition, motivated by the sparsity of Hi-C contact data, especially when
obtained from single-cell assays, we appreciably extend the class of distri-
butions used to model contact counts. We build a general distribution-based
metric scaling (DBMS) framework, from which we develop zero-inflated and
Hurdle Poisson models as well as negative binomial applications. Illustrative
applications make recourse to bulk Hi-C data from IMR90 cells and single-
cell Hi-C data from mouse embryonic stem cells.

1. Introduction. The task of reconstructing the three-dimensional (3D) configuration of
chromatin (for a single chromosome) within the eukaryotic nucleus from pairwise contact
assays, notably Hi-C (Lieberman-Aiden et al., 2009; Duan et al., 2010; Rao et al., 2014),
is motivated by (at least) three considerations. First, such architecture is critical to an array
of cellular processes, particularly transcription, but even memory formation (Marco et al.,
2020). Second, armed with such an inferred configuration, we can superpose genomic at-
tributes, enabling biological insights not accessible from the primary Hi-C contact matrix
readout. Examples here include gene expression gradients and co-localization of virulence
genes in the malaria parasite (Ay et al., 2014), the impact of spatial organization on dou-
ble strand break repair (Lee et al., 2016), and elucidation of ‘3D hotspots’ corresponding
to (say) overlaid ChIP-Seq transcription factor extremes which can reveal novel regulatory
interactions (Capurso, Bengtsson and Segal, 2016). Third, despite notable gains in imaging
methodologies (Payne et al., 2021), such direct access to structure is yet to enjoy the resolu-
tion and uptake conferred by Hi-C assays.

This set of factors has led to a wealth of 3D reconstruction algorithms: a recent review
(Oluwadare, Highsmith and Cheng, 2019) identified over 30 methods and there have nu-
merous additions in subsequent years. However, the very notion of ‘a’ 3D reconstruction
is simplistic, genomes being dynamic and variable with differences according to organism,
tissue, cell-type, cell-cycle, and cell. Hi-C experiments are frequently performed on large,
synchronized cell-type specific populations, so that resultant reconstructions are interpreted
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as providing a consensus configuration. The emergence of single cell Hi-C (scHi-C, Ramani
et al., 2017; Stevens et al., 2017) has enabled dissection of inter-cellular structural variation,
at the expense of yielding appreciably sparser data. Developing reconstruction methodology
to accommodate such sparsity is one of our contributions; see Sections 11-14.

Another component of structural variation is allelic: in diploid organisms maternal and pa-
ternal homologs can adopt differing configurations. This poses difficulties for reconstruction
algorithms since Hi-C readout is generally unphased, and resultant contacts are ambiguous as
to whether they are intra- or inter- homolog. Until recently, these concerns have been ignored
but novel approaches attempt to resolve identifiability issues by either prescribing assump-
tions and/or invoking additional data sources (Cauer et al., 2019; Belyaeva et al., 2021). We
do not address these aspects here, but note that the concerns can be sidestepped if phasing of
Hi-C output can be achieved, HiCHap (Luo et al., 2020) being an accurate tool for doing so.

Clearly, the forefront structural feature of a single chromosome is its contiguity, followed
by its folding complexity, necessary to achieve the compaction needed to fit within the nu-
cleus. And it is these features that our original 3D reconstruction algorithm, Poisson metric
scaling (PoisMS, Tuzhilina, Hastie and Segal, 2020) addressed. In prior work contiguity had
been tackled by imposing constraints (Duan et al., 2010; Ay et al., 2014; Stevens et al., 2017),
which are cell type specific and require prescription of constraint parameters. Given a paucity
of relevant background biological measurement, these parameters can be difficult to spec-
ify. Further, their inclusion substantially increases computational burden. Other approaches
(Zhang et al., 2013; Park and Lin, 2017; Rieber and Mahony, 2017) ignore contiguity in
the reconstruction process, imposing it post hoc by “connecting the dots” of the 3D solution
according to the ordering of corresponding genomic loci.

We review our PoisMS methodology, that extends principal curves (Hastie and Stuetzle,
1989) to the metric scaling problem, in Section 2. Previously, we had used B-spline bases as
primitives for obtaining chromatin configuration but, as described in Section 3, this formu-
lation is problematic when used with cross-validation to determine smoothness degree (for
reasons detailed in Sections 3 and 10), which is critical for appropriately capturing the above-
mentioned second key attribute, folding complexity. Accordingly, in Sections 3 through 9, we
introduce a smoothing spline basis, and attendant algorithm SPoisMS. We describe how this
improvement enables effective cross-validation and mitigates initialization concerns, which,
subsequently, is demonstrated via a series of experiments. We also propose how SPoisMS can
be efficiently implemented by exploiting its connections with PoisMS, and develop degrees-
of-freedom estimates facilitating calibrated methods comparison.

We then turn attention to issues surrounding sparsity and overdispersion – characteristic
of all contact matrices but especially extreme for data deriving from single cell Hi-C assays,
the importance of which has already been noted. These features make Poisson assumptions
inappropriate. To address these concerns we advance general distribution-based metric scal-
ing methodology and algorithms (Section 12), then specialize to select special cases: hurdle
Poisson, zero-inflated Poisson, negative binomial (Section 13), and finally make comparisons
between these and the original Poisson formulation (Section 14) before providing concluding
Discussion and directions for further work.

2. The PoisMS method. We provide a brief overview of our recently proposed Poisson
metric scaling (PoisMS, Tuzhilina, Hastie and Segal, 2020), a novel approach which directly
models 3D chromatin configuration by a 1D smooth curve. The result of a Hi-C experiment is
the contact map, a symmetric matrix C = [Cij ] ∈ Zn×n+ of contact counts between n (binned)
genomic loci i, j. While such counts are obtained on a genome-wide basis our focus is solely
on individual chromosomes. The 3D chromatin reconstruction problem is to use the contact
matrix C to obtain a 3D point configuration x1, . . . , xn ∈ R3 corresponding to the spatial
coordinates of loci 1, . . . , n respectively.
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Denote the matrix of the loci spacial coordinates by X =

(
−x>1 −
...
−x>n−

)
∈ Rn×3. The core

assumption of the model is

(1) x1, . . . , xn ∈ γ, where γ is a smooth one-dimensional curve in R3.

We express this assumption in matrix form as follows. First, if curve γ is parametrized
by t and ti indexes the genomic locus of xi, then (1) can be reformulated as the set of
equations xi = γ(ti). Next, to impose smoothness, we specify that each component of
γ(t) = (γ1(t), γ2(t), γ3(t))> is a cubic spline and so can be represented by a linear com-
bination of basis functions:

γj(t) =
∑k

`=1 Θ`j h`(t), where h1(t), . . . , hk(t) is a cubic spline basis.

Here k is the size of the basis and is the hyperparameter that controls the “wiggliness” of
the resulting reconstruction, which we will subsequently refer to as degrees-of-freedom. Fi-
nally, if H ∈ Rn×k is the matrix with elements Hi` = h`(ti) and Θ ∈ Rk×3 represents the
spline coefficient matrix, then the smoothing constraint can be rewritten in matrix form as
X = HΘ.

Next, we introduce the probabilistic model for the contact counts. To do so, we use the
Poisson distribution and link the Poisson parameters to the pairwise distances between loci.
Specifically, we assume that Cij ∼ Pois(λij) and

(2) log(λij) =−‖xi − xj‖2 + β,

where β is an unknown intercept. The resulting negative log-likelihood objective is therefore

(3) `PoisMS(X,β;C) =
1

n2

∑
1≤i,j≤n

[
e−‖xi−xj‖

2+β −Cij
(
−‖xi − xj‖2 + β

)]
.

Combining (3) with the smoothing constraint leads us to the following MLE problem

(4) minimize
Θ∈Rk×3, β∈R

`PoisMS(HΘ, β;C).

Our particular formulation for the log-link (2) retains the heuristic that loci close in 3D
should have higher expected contact counts and results in an objective that is equivalent to,
but much easier to optimize, than, the more conventional exponential link λij = β‖xi − xj‖α
(Rosenthal et al., 2019). In Tuzhilina, Hastie and Segal (2020) we propose an efficient itera-
tive algorithm that recovers the solution to (4), schematically outlined as follows.

Poisson metric scaling (PoisMS)

1. For the fixed intercept β we compute the second order approximation (SOA) to the PoisMS
loss. The approximation is done at the current guess of the reconstruction X and it has the
form of weighted Frobenius norm:

`PoisMS(X,β;C)≈ `WPCMS(X;Z,W ) = ‖
√
W ∗ (Z −D2(X))‖2F .

Here W = e−D
2(X)+β and Z = D2(X) − C

W + 1 are the weight and working response
matrices, both depending on the current guesses for X and β, and D(X) corresponds to
the pairwise distance matrix with elements Dij = ‖xi − xj‖. WPCMS connotes weighted
principal curve metric scaling.

2. Combining the SOA with the smoothing constraint X =HΘ gives the WPCMS problem:

(5) minimize
Θ∈Rk×3

`WPCMS(HΘ).

This problem can be considered as an approximation of (4).
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3. We solve (5) via the WPCMS algorithm using projected gradient descent. Performed in
the space of similarity matrices S(X) =XX>, it alternates between two steps:
• the gradient step moving S along its gradient;
• the projection step mapping S back onto the space of spline similarity matrices.
In detail, the gradient step updates the similarity matrix as

S := S −∇S`WPCMS =XX> −Φ(W ∗ (Z −D2(X))),

where Φ(G) =G− diag(G · 1). Then the projection step minimizes the distance between
S and the space of similarity matrices

`PCMS(X;S) = ‖S −XX>‖2F .

Combined with the smoothing constraint this leads us to the optimization problem that we
hereafter will refer to as principal curve metric scaling (PCMS):

minimize
Θ∈Rk

`PCMS(HΘ).

The PCMS problem has an explicit solution: if H has orthonormal columns, it can be
found via the singular value decomposition of H>SH .

4. WPCMS returns a new coefficient matrix Θ thereby updating the reconstructionX =HΘ.
Finally, for fixed X we optimize the PoisMS loss w.r.t. β thus updating the intercept:

β := log

( ∑
1≤i,j≤nCij∑

1≤i,j≤n e
−‖xi−xj‖2

)
.

3. Improved approach: smoothing splines. While the PoisMS approach has proved
effective, there are some caveats. First, since the objective in (4) is non-convex, the PoisMS
algorithm converges to a local minimum. Thus, initialization for Θ and β can impact the
resulting reconstruction. Although we did not observe appreciable variation in the PoisMS
solutions over a range of experiments, initialization choice remains an open question. We
provide more details in the Appendix of Tuzhilina, Hastie and Segal (2020). Second, it is
not clear how to perform cross-validation in the contact matrix context. Our original idea
was to hold out some chromatin loci, pretending that they were unobserved, train the PoisMS
model on the observed loci, then evaluate the fit on the held-out set. The training procedure is
equivalent to removing a subset of rows and columns from the contact matrix, eliminating the
corresponding rows in the spline basis matrix, and performing reconstructing using only the
observed blocks of C and H . Although this approach may seem reasonable, care is needed
in selecting unobserved loci: strong contact matrix correlations can derail cross-validation
when loci are chosen at random.

To illustrate these issues we utilize Hi-C data for IMR90 cells chromosome 20 (Dixon
et al., 2012), obtained from the Gene Expression Omnibus (GEO) with accession GSE35156,
there being n= 599 loci when binned at 100kb resolution. We compute a 3D reconstruction
X via PoisMS with 25 degrees-of-freedom, the value determined as optimal using the “elbow
heuristic” (Tuzhilina, Hastie and Segal, 2020), an approach used in lieu of cross-validation.
The matrix of the Poisson parameters Λ = e−D

2(X)+β and attendant error matrix E =C −Λ
are then computed, and a heatmap for the pairwise correlations between rows in E is dis-
played in the left panel of Figure 1. The numerous instances of extreme (near one) corre-
lation, both on and off the diagonal, demonstrate the extent of strong correlations between
neighboring rows of the error matrix.

To overcome the problems deriving from these correlations in performing cross-validation
by selecting unobserved loci at random, we attempted using block cross-validation, removing
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FIG 1. Left panel: heatmap of the correlation matrix between the rows of the error matrix E = Λ − C , where
Λ is the Poisson parameter matrix obtained from the PoisMS reconstruction. Spearman correlation is used for
robustness. Numerous instances of high correlation between neighboring are evident. Right panel: Block-cross
validation performance with 20 folds. The PoisMS approach is trained on 19/20 folds, the test score is measured
on 1/20 held-out set. The plot represents the dependence of the test loss (log-scaled) on the degrees-of-freedom
ads shows the dramatic increase in the average test score as well as the variance with the growth of degrees-of-
freedom. The outliers for most boxplots correspond to holding out the two extreme blocks (number one 1 and 20).
The grey dashed line corresponds to zero.

rows in H and rows (and corresponding columns) in C in continuous blocks. This is where
PoisMS encounters difficulties. Specifically, since each element of the B-spline basis has
finite support, the spline basis matrix tends to be sparse. Thus, eliminating a block of rows
in H can potentially exclude one or multiple elements from the basis, resulting in very high
reconstruction variance. We illustrate this fact by measuring the test loss on a held-out set
while performing 20-fold block cross-validation for the PoisMS technique (see Section 10
for more details on the procedure). Figure 1 demonstrates the dramatic decay in the test
performance as well as the significant increase in the test score variance.

Accordingly, we develop an approach based on smoothing splines that resolves these ini-
tialization and cross-validation concerns. First, we rewrite (3) in terms of the curve γ as

(6) `SPoisMS(γ,β;C) =
1

n2

∑
1≤i,j≤n

[
e−‖γ(ti)−γ(tj)‖2+β −Cij

(
−‖γ(ti)− γ(tj)‖2 + β

)]
.

Instead of incorporating smoothness with the B-spline basis we form the penalized loss

(7) `SPoisMS(γ,β;C,λ) = `PoisMS(γ,β;C) + λ

∫
‖γ′′(t)‖2 dt.

The second term in the objective measures the curve’s smoothness via its second-order
derivative, usually termed the roughness penalty. We state an alternative smoothing Poisson
metric scaling (SPoisMS) optimization problem:

(8) minimize
γ∈Γ, β∈R

`SPoisMS(γ,β;C,λ).

Here Γ is the set of all smooth (second-order derivative exists) one-dimensional curves in
R3. Note that in SPoisMS the “wiggliness” of the resulting reconstruction is controlled in a
different way than in PoisMS, where it depends on the basis size k. In SpoisMS, increasing
λ will place a greater penalty on the second derivative of γ, thereby encouraging smoother
solutions.

From standard smoothing spline theory (e.g., Green and Silverman (1994) and Wahba
(1990)) we have that each component of the optimal solution γ is a natural cubic spline with
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knots t1, . . . , tn. We restate problem (8) in matrix form as follows. Denote by n1(t), . . . , nn(t)
the natural spline basis. Let N ∈ Rn×n be the matrix representing the basis evalua-
tions at the knots, i.e. Ni` = n`(ti), and Ω ∈ Rn×n be the penalty matrix with elements
Ωi` =

∫
n′′i (t)n

′′
` (t)dt. Then, for each γ, there exists Θ ∈Rn×3 such that the objective (7) is

equivalent to

`SPoisMS(Θ, β;C,Ω, λ) = `PoisMS(NΘ, β;C) + λ tr(Θ>ΩΘ).

Now, let K =N−TΩN . Since N is full-rank and non-singular, using a change of variables
X =NΘ we restate the optimization problem (8) as

(9) minimize
X∈Rn×3, β∈R

`SPoisMS(X,β;C,K,λ) = `PoisMS(X,β;C) + λ tr(X>KX).

4. Link between PoisMS and the smoothing spline approach. The matrix K has sev-
eral important properties. We exploit these to demonstrate that the SPoisMS loss calculated
for the original contact matrix C is equivalent to the PoisMS loss computed for C − λn2

2 K .
Consequently, the SPoisMS problem can be readily solved by applying the original PoisMS
method to an adjusted version of the contact matrix.

Let K = UDU> be the eigendecomposition of the penalty matrix. K has two zero eigen-
values and the corresponding eigenvectors span the subspace of linear functions (Green
and Silverman, 1994). This implies that K1 = 0 and 1>K = 0, which further implies∑

1≤i,j,≤nKij = 0 (see Appendix A for details). Here 1 = (1, . . . ,1)> ∈ Rn is the n-
dimensional vector of ones. These properties enable linking SpoisMS and PoisMS losses
per Lemma 1.

LEMMA 1. If K is the smoothing spline penalty matrix and Cλ =C − λn2

2 K then

`SPoisMS(X,β;C,K,λ) = `PoisMS(X,β;Cλ).

PROOF. Recall that S(X) = XX> is the matrix of the pairwise inner products between
genomic loci and D(X) is the pairwise distance matrix with elements Dij = ‖xi − xj‖.
Denote the diagonal of the inner product matrix by

s(X) = diag(S(X)) =
(
‖x1‖2,‖x2‖2, . . . ,‖xn‖2

)>
.

S(X) and D(X) are related via

(10) D2(X) = s(X) · 1> + 1 · s(X)> − 2S(X).

Combining this equation with the properties of K and trace it is easy to show that

tr(X>KX) = tr(KS(X)) =−1

2
tr(KD2(X)) =

1

2

∑
1≤i,j,≤n

Kij(−‖xi − xj‖2 + β).

The following steps conclude the proof:

`SPoisMS(X,β;C,K,λ) = `PoisMS(X,β;C) + λ tr(X>KX) =

=
1

n2

∑
1≤i,j≤n

[
e−‖xi−xj‖

2+β −
(
Cij −

λn2

2
Kij

)(
−‖xi − xj‖2 + β

)]
=

= `PoisMS(X,β;Cλ).

It is through this lemma that implementation of SPoisMS is appreciably simplified, since
instead of requiring development of new iterative algorithms to solve (9), we can just use the
existing PoisMS algorithm applied to the adjusted contact matrix Cλ.
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5. Truncating the basis. Lemma 1 demonstrates that (9) is equivalent to solving the
unconstrained PoisMS problem

minimize
X∈Rn×3, β∈R

`PoisMS
(
X,β;C − λn2

2
K
)
.(11)

Recall that if there was the smoothing constraint X =HΘ, the projection step in the PoisMS
algorithm would involve the singular value decomposition of the k× k matrixH>SH , which
is computationally cheap for small k (see Section 2 for details). However, in the case of the
unconstrained problem (11), the projection is problematic as now it requires us to compute
the SVD of the large n× n matrix S at each iteration.

There are several ways to circumvent this computational concern. Note that the PoisMS
projection step aims to find Θ that minimizes the Frobenius distance between the similarity
matrix S and HΘΘ>H>, which, for orthogonal H , is equivalent to solving

minimize
Θ∈Rk×3

‖H>SH −ΘΘ>‖2F .

Since this step seeks the rank-three approximation of H>SH , it is sufficient to compute only
the first three singular vectors of this matrix. Our first computational trick is to use the block
power method (Bentbib and Kanber, 2017), which is more efficient for finding a few singular
vectors than calculating the full SVD.

The second trick involves including a constraint in (11) such that the resulting optimiza-
tion problem accurately approximates (9) but requires less costly SVD steps. Recall that we
decomposed the penalty matrix as K = U>DU . Since the columns of U form the natural
spline basis (the Demmler-Reinsch basis), the resulting reconstruction can be represented as
X = UΘ leading to an alternative form tr(Θ>DΘ) for the smoothing penalty. We then ex-
ploit a feature of the Demmler-Reinsch basis: the wigglier the basis element, the larger the
corresponding eigenvalue. So, increased smoothness of the reconstruction can be achieved by
increased penalization of the coefficients in Θ corresponding to the largest diagonal elements
in D, and thus the wiggliest part of the basis U . Since some of the columns of U have little
effect on the resulting reconstruction we can remove them from the basis. Accordingly, we
can set H ∈Rn×k to the eigenvectors from U corresponding to the largest k eigenvalues and
solve the alternative problem

minimize
Θ∈Rk×3, β∈R

`PoisMS
(
HΘ, β;C − λn2

2
K
)
.(12)

Again, the solution is readily done using the PoisMS algorithm and, for k sufficiently large,
the resulting will accurately approximate the solution from (11). However, since each projec-
tion step in PoisMS involves the SVD of a smaller k×k matrix, it is reached more efficiently.

6. SPoisMS and PoisMS comparison. There are several advantages in using smoothing
splines (SPoisMS ) rather than B-splines (PoisMS) for 3D chromatin reconstruction. Control-
ling smoothness by the size of the B-spline basis requires recomputing matrix H for each
degrees-of-freedom value. In contrast, H is fixed for smoothing splines, with the penalty
factor determining model flexibility. This implies that Θ ∈ Rk×3 is the same shape for any
value of λ. This is important with regard to SPoisMS initialization. In particular, the path
of solutions can be generated by gradually decreasing the penalty factor and re-using Θ ob-
tained for larger λ as a warm start for smaller values. Additionally, the support for each
Demmler-Reinsch basis function is R. So, with respect to the cross-validation issues dis-
cussed in Section 3, block cross-validation would not be subject to the instabilities affecting
use of the B-spline basis.
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The main disadvantage of SPoisMS is that the basis size k needs to be relatively large in
order to ensure an accurate solution. This makes each step of the SPoisMS computationally
more expensive than a PoisMS step. Further, controlling smoothness by the (B-spline) basis
size, as per PoisMS, admits a natural interpretation as degrees-of-freedom. However, while
it is apparent that increasing λ should decrease the degrees-of-freedom (df ) for SPoisMS,
formally determining df in this case is less immediate, a problem we tackle next.

7. Degrees-of-freedom. The notion of effective degrees-of-freedom is very well studied
in the context of linear models, one definition being the trace of the “hat” matrix (Hastie,
Tibshirani and Friedman, 2009). In particular, in their chapter 5.4 the following formula
was derived for smoothing splines: if y,x ∈ Rn and d1, . . . , dn are the eigenvalues of the
Demmler-Reinsch penalty matrix K then the loss function

(13) `(f) =
1

n
‖y− x‖2 + λx>Kx

implies the degrees-of-freedom as

(14) df =

n∑
i=1

1

1 + λndi
.

In this section we propose a method for estimating df for the SPoisMS model. The general
idea is to derive the appropriate approximation of the SPoisMS loss in such a way that it
would resemble the standard smoothing spline loss (13). This will require us to prove the
following lemma.

LEMMA 2. The projection step of SPoisMS solves the following penalized PCMS prob-
lem for some S̃ independent of λ:

(15) minimize
X∈Rn×3

1

n2
‖S̃ −XX>‖2F + λ tr(X>KX).

See Appendix B for the proof. This lemma gives us an advantage to simplify the SPoisMS
loss as, at the convergence point and for some S̃, the SPoisMS solution coincides with the
solution to problem (15). Therefore, if we derive a df formula for penalized PCMS it can
serve as an accurate approximation to the SPoisMS degrees-of-freedom.

Now we need to account for the fact that X ∈ Rn×3 is a matrix with three columns,
whereas standard formula (14) is defined for a vector x ∈Rn. Note that the penalized PCMS
problem can be solved in two ways. First, one can rewrite it as

minimize
X∈Rn

∥∥(S̃ − λn2

2
K
)
−XX>

∥∥2

F

and findX via the eigendecomposition of S̃− λn2

2 K. Alternatively, one can apply the coordi-
nate descent type of the algorithm alternating among the three columns ofX = (X1,X2,X3).
Specifically, if we fix X2 and X3, we can update X1 by solving a one-dimensional penalized
PCMS problem as follows

minimize
X1∈Rn

1

n2
‖(S̃ −X2X

>
2 −X3X

>
3 )−X1X

>
1 ‖2F + λX>1 KX1.(16)

By analogy, we can update X2 and X3 via fixing the remaining two columns. This approach
implies that at the convergence point, the three-dimensional problem (15) can be replaced by
three one-dimensional analogs (one per a column of X). In the following lemma we propose
a definition of degrees-of-freedom for a one-dimensional version of penalized PCMS.
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LEMMA 3. The degrees-of-freedom for one-dimensional penalized PCMS

minimize
x∈Rn

1

n2
‖S̃ − xx>‖2F + λx>Kx

can be calculates as

df =

n∑
i=1

1

1 + λn2

‖x0‖2di
,

where x0 ∈Rn is the solution to the problem.

The proof can be found in Appendix B. An important observation from the lemma is that
the proposed formula for df is independent from S̃. Therefore, we can compute degrees-of-
freedom separately for each column of X and use the average as df for SPoisMS. This leads
us to the final definition of the SPoisMS degrees-of-freedom.

THEOREM 1. If X0 = (X01,X02,X03) is the solution to (9) then the effective degrees-
of-freedom can be approximated by

(17) df =
1

3

n∑
i=1

3∑
j=1

1

1 + λn2

‖X0j‖2di
.

8. IMR90 cell experiments. We evaluated the SPoisMS approach using the IMR90 cell,
chromosome 20 Hi-C data described in Section 3. First, we compute reconstructions via the
SPoisMS method with the penalty factor ranging over λ= 104,103,100,10,1,0.1. To speed
up the computations we truncate the Demmler-Reinsch basis, including only the eigenvec-
tors that correspond to the k = 300 smallest eigenvalues of K (see Section 5 for details). We
then generate the solution path by starting from the largest λ = 104, and reusing Θ and β
calculated at the previous step as a warm start for the subsequent value of λ. The resulting
fits are presented in Figure 3 and reveal the increased wiggliness that results from decreasing
the penalty factor thereby imposing less smoothness. Next, for each λ value we report the
corresponding degrees-of-freedom computed via (17) in the table below which reveals that
the range of λ considered covers degrees-of-freedom from df ≈ 5 (very smooth reconstruc-
tion) to df ≈ 83 (very wiggly). As a final step, to compare the performance of SPoisMS and
the original PoisMS method, we round the resulting values of df and compute the PoisMS
reconstructions using the B-spline basis of size df and random initialization. The resulting
fits are displayed in Figure 3.

λ 104 103 100 10 1 0.1

df 5.15 8.77 15.21 26.71 47.24 83.44

Analyzing Figures 2 and 3 leads us to the following conclusions. First, comparing the
PoisMS and SPoisMS solutions we observe that the degrees-of-freedom formula derived in
Section 7 produces quite an accurate approximation. To quantify how well our df definition
represents nature, in Appendix C, we run additional experiments measuring the wiggliness
of each reconstruction in terms of its average curvature. Second, we conclude that reusing
SPoisMS solutions as a warm start produces a well-aligned sequence of fits that evolve in
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a continuous way with decrease of λ. In contrast, we observe less agreement between the
PoisMS solutions, which the random initialization of the method can explain. Finally, the left
panel of Figure 4 demonstrates that using warm-starts for subsequent values of λ substantially
decreases the total number of iterations required for the SPoisMS method to converge. This
illustrates the utility of the smoothing spline from the computational point of view.

9. Model validation. The lack of 3D chromatin configuration image data for many cell
types at suitable resolutions makes assessing accuracy of candidate Hi-C derived reconstruc-
tions challenging. Here we develop an approach to appraising model validity based on parti-
tioning genomic loci into training and testing sets. Suppose we have only partial access to the
contact matrix, i.e. we assume that some of loci are unobserved and denote byO⊆ {1, . . . , n}
the set of observed loci and its complement by U . To effect model evaluation we first use loci
from O to compute the model coefficients Θ and intercept β, and then use U to evaluate
the model performance. How this is accomplished for PoisMS and SPoisMS respectively is
described next.

9.1. PoisMS performance evaluation. To simplify notation, without loss of generality
we can assume that the rows and columns in C are permuted such that the first |O| of them
correspond to contacts for the observed loci. Then the contact matrix has block-structure
C =

(
COO COU
CUO CUU

)
, which, in turn, implies the structure in the basis matrix H =

(
HO
HU

)
.

To fit the PoisMS model on the observed data we evaluate the log-likelihood only at con-
tacts from O, yielding the training PoisMS loss

(18) `train
PoisMS(X,β;C) =

1

|O|2
∑

(i,j)∈O×O

[
e−‖xi−xj‖

2+β −Cij
(
−‖xi − xj‖2 + β

)]
.

Here |O| is the number of observed loci. It is not hard to show that

`train
PoisMS(X,β;C) = `PoisMS(XO, β;COO),

therefore, minimizing (18) subject to the smoothing constraint X = HΘ is equivalent to
solving the problem

(19) minimize
Θ∈Rk×3, β∈R

`PoisMS(HOΘ, β;COO).

Thus, the solution can be found by applying PoisMS to contact matrix COO with basis HO .
Now we proceed to the model evaluation step. Note that the original PoisMS algorithm

requires the basis matrix to have orthonormal columns, which while true for the full H ,
but may not be the case for the sub-matrix HO. So, before fitting the PoisMS model, we
compute the QR-decomposition HO = QR and replace the basis matrix by Q. In order to
evaluate how well the parameters (coefficient matrix Θ, intercept β) obtained from solving
the PoisMS problem fit the remaining unseen contact counts we compute the complementary
test loss

(20) `test
PoisMS(X,β;C) =

1

n2 − |O|2
∑

(i,j)/∈O×O

[
e−‖xi−xj‖

2+β −Cij
(
−‖xi − xj‖2 + β

)]
.

Since this loss involves contacts between both observed and unobserved genomic loci it is
necessary to recover the full reconstruction, which is easily obtained via the formula

X =
(
XO
XU

)
=
(

QΘ
HUR−1Θ

)
.

This reconstruction is subsequently plugged in (20) yielding the model test score.
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(a) λ= 104, df ≈ 5.15 (b) λ= 103, df ≈ 8.77 (c) λ= 100, df ≈ 15.21

(c) λ= 10, df ≈ 26.71 (d) λ= 1, df ≈ 47.24 (d) λ= 0.1, df ≈ 83.44

FIG 2. Reconstructions obtained via the smoothing spline approach for different λ values. The solution path is
produced in a sequential way: the reconstruction for larger λ is utilized as a warm start for the smaller λ. As
a result, the solutions evolve in a continuous way. Colors (orange, teal) distinguish chromosome arms. Before
potting the solutions were aligned via the Procrustes transformation.

(a) df = 5 (b) df = 9 (c) df = 15

(d) df = 27 (e) df = 47 (f) df = 83

FIG 3. Reconstructions obtained via the original PoisMS approach for different df values. The grid of df values
is chosen to match the degrees-of-freedom in Figure 2. Each solution is produced by a random initialization of Θ.
Random initialization for each value implies less agreement between the subsequent reconstructions than for the
SPoisMS method. Before potting the solutions were aligned via the Procrustes transformation.
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9.2. SPoisMS performance evaluation. Now we extend the above approach to the
smoothing spline technique. By analogy with (18), we can derive the SPoisMS training loss
as

`train
SPoisMS(γ,β;C,λ) =

1

|O|2
∑

(i,j)∈O×O

[
e−‖γ(ti)−γ(tj)‖2+β −Cij

(
−‖γ(ti)− γ(tj)‖2 + β

)]
+ λ

∫
‖γ′′(t)‖2 dt.(21)

For this penalized loss the following lemma can be proved.

LEMMA 4. The optimization problem

minimize
γ∈Γ, β∈R

`train
SPoisMS(γ,β;C,λ).

is equivalent to solving the reduced PoisMS problem

(22) minimize
XO∈RO×3, β∈R

`PoisMS
(
XO, β;COO −

λ|O|2

2
(K/KUU )

)
.

HereK/KUU =KOO−KOUK−1
UUKUO is the Schur complement of the penalty matrix, which

has block structure similar to C , i.e. K =
(
KOO KOU
KUO KUU

)
.

The proof is based on the properties of the smoothing spline basis (see Appendix D for the
details). The lemma demonstrates that the solution to the SPoisMS problem can be computed
by means of the PoisMS algorithm, even for a subset of knots. Moreover, it implies that if
we treat some loci as unobserved we can re-use the full K to compute the penalty matrix for
the reduced problem. In the lemma proof we also provide an explicit formula to impute the
unobserved part of the reconstruction. The complete reconstruction

X =
(

XO
−K−1

UUKUOXO

)
will be subsequently plugged in (20) thereby producing the test score.

Note that the idea form Section 5 can be extended to partially observed data as well.
Specifically, to reduce computations for the training fit, we can obtain an accurate approxi-
mation of (26) by obtaining the SVD of K/KUU and using a subset of the singular vectors
as a basis for XO .

10. Block cross-validation. In Section 3 we raised the issue of high-correlation between
the contact counts, which makes standard cross-validation approaches problematic for 3D
chromatin reconstruction algorithms. To moderate the influence of correlated data on model
evaluation process, we proposed the use of block cross-validation (BCV), noting difficul-
ties encountered by the PoisMS algorithm. Here we investigate BCV performance for both
PoisMS and SPoisMS using IMR90 cell Hi-C data.

First, we partition the n = 599 genomic bins into 20 folds, each containing consecutive
loci. We assign one fold to U thereby treating 5% of the loci as unobserved; the remaining 19
folds (95% of the loci) are assigned toO. Next, following the procedure from Section 9.1, we
useO to compute solutions (Θ, β) via either PoisMS or SPoisMS. In our experiments, we test
SPoiMS with penalty factors in the range λ= 104,103,100,10,1,0.1. This facilitates making
results compatible with SPoisMS by simply using the tabled degrees-of-freedom correspon-
dence when computing the PoisMS solution (see Section 8 for details). Finally, to evaluate
how well the solutions obtained for each method and each hyperparameter fit the unobserved
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FIG 4. Left panel: dependence between the number of iteration until the convergence and the reconstruction
complexity (controlled by df in PoisMS and λ in SPoisMS). Using warm starts substantially decreases the number
of iteration for the SPoisMS method for small λ. Random initialization for the PoisMS approach keeps the total
number of iterations high for large degrees-of-freedom. Right panel: comparison of the block cross-validation
performance for the PoisMS and SPoisMS methods. The train fit is obtained using 95% of the loci, the test score
is computed on the remaining 5% of the loci. For df = 47 and 83 the mean PoisMS test score is so large that
the confidence interval did not fit in the plot limits. The cross indicates the parameter value corresponding to the
minimum score.

set of loci U we impute the reconstruction and use the completed X to evaluate the test
score (20). This entire procedure is repeated for all folds (excluding the two boundaries to
mitigate edge effects). We present the mean as well as the 1SE intervals of the test score in
the right panel of Figure 4.

From the left panel of the plot we see that, as anticipated, confidence intervals computed
via PoisMS "explode" for high values of degrees-of-freedom. On the contrary, the SPoisMS
test scores exhibit robust behavior regardless of the penalty factor λ. To summarise, replacing
the B-spline basis of PoisMS with the smoothing spline (roughness penalty) approach of SPo-
isMS enables principled 3D reconstruction evaluation and degrees-of-freedom determination
by facilitating block cross-validation.

11. Sparse contact matrices and over-dispersion. Contact matrices have two impor-
tant attributes. First, they are exceedingly sparse, with large proportions of zero counts. This
is especially true for subsequently described single cell Hi-C assays – as opposed to bulk cell
experiments typically conducted using pools of ∼ 106 cells. For comparison, the bulk cell
data (IMR90) that we use for our experiments has 28% of zeros whereas the sparsity level
of the single cell data is 99%. Second, they are diagonally dominant (Yang et al., 2017) re-
flecting, in part, chromatin contiguity. These factors tend to result in zero-inflation and over-
dispersion with respect to assumed Poisson contact count distributions. To illustrate these
concerns for the IMR90 cell data we use the 3D reconstruction X produced by the PoisMS
approach with df = 25 and compute the expected mean count matrix Λ (see Section 3 for
details). In Figure 5 we present the scatter plot for expected counts Λij vs observed counts
Cij . The dense conglomeration of the points along the y-axis, as well as the substantial de-
viation of observed from predicted values for high contact counts highlights the presence of
zero-inflation and over-dispersion.

12. Distribution-based metric scaling. As illustrated above, contact counts can vio-
late the underlying Poisson assumptions. Indeed, the noted overdispersion has been widely
documented in Hi-C data sets by Varoquaux, Noble and Vert (2021), who advance negative
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FIG 5. Expected Λij vs Observed Cij counts where expected counts derive from a 3D reconstruction of IMR90
cell chromosome 20 obtained using PoisMS with 25 degrees-of-freedom. The dashed line depicts equality between
observed and expected counts as would hold under Poisson assumptions. The solid curve is a scatter plot smooth
obtained via generalized additive mode smoothing: zero-inflation of contact counts is demonstrated by the curve
adhering to the expected counts axis even for moderate values thereof.

binomial models to effect 3D reconstruction. Here we show that the PoisMS algorithm can be
extended to a broad class of models, including the negative binomial, by developing a gen-
eral approach distribution-based metric scaling (DBMS) which we subsequently specialize to
three select chromatin 3D reconstruction techniques.

The DBMS model assumes that each contact count follows a discrete distribution with
support Z+. This distribution depends on some parameters, which we subsequently link to
the chromatin conformation X . We propose that the link function involve pairwise distances
between loci as well as some nuisance parameters that we denote by Ω. The resulting negative
log-likelihood loss has the form of `DBMS(X,Ω;C). To solve the DBMS problem we minimize
the loss w.r.t. unknown X and Ω, subject to the smoothing constraint X =HΘ. Similarly to
the PoisMS case, the optimization algorithm alternates between two steps.

Step 1: update the reconstruction. Since the negative log-likelihood depends only on dis-
tances we can re-write the loss as `DBMS(D2(X),Ω;C). As a first step, for the current re-
construction guess X , we compute the second order approximation of the loss at the point
D2(X). To do so, we calculate the first and second order derivatives

∇=∇D2`DBMS(D2(X),Ω;C) and ∇2 =∇2
D2`DBMS(D2(X),Ω;C)

and evaluate the weight and working response matrices

W =∇2 and Z =D2(X)− ∇
∇2

.(23)

This leads to the second order approximation

`DBMS(D2(X),Ω;C)≈ ‖
√
W ∗ (Z −D2(X))‖2F .(24)

Now, instead of optimizing the original loss, we minimize its second order approximation
subject to the smoothing constraint X =HΘ. That is we solve the problem

minimize
Θ∈Rk×3

‖
√
W ∗ (Z −D2(HΘ))‖2F ,

which can be accomplished using WPCMS. As a result, we update Θ and the reconstruction
X =HΘ.

Step 2: update the nuisance parameters. We fixX and optimize the loss `DBMS(D2(X),Ω;C)
w.r.t. Ω. Depending on the distribution, we will use one of the following approaches to update
the nuisance parameters:
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• compute the first order derivative of the loss w.r.t. Ω and use it to find an explicit formula
for the optimal value;

• compute the first and second order derivatives of the loss w.r.t. Ω and use them to run
Newton’s algorithm.

13. Alternative contact count distributions. We now describe three alternative distri-
butions for contact counts: hurdle Poisson, zero-inflated Poisson, and negative binomial. The
optimization algorithm for each is readily obtained using DBMS as outlined above and de-
tailed in the Appendix.

13.1. Hurdle Poisson. The hurdle Poisson model (Gurmu, 1998) has two components: (i)
zero counts follow a Bernoulli distribution; and (ii) non-zero counts follow a zero-truncated
Poisson (ZTP) distribution. Thus

Cij = 0 with probability π,

Cij |Cij > 0∼ ZTP(λij)

which leads to the following distribution for Cij

P (Cij = c) =

{
π, if c= 0

1−π
1−e−λij

λcije
−λij

c! , if c > 0

We again use the log-link (2) to introduce dependence between truncated Poisson parameters
λij and chromatin 3D spacial structure. IfN = {(i, j) :Cij = 0} represents the subset of zero
contact counts, then the goal of the Hurdle Poisson metric scaling (HPoisMS) is to minimize
the negative log-likelihood

`HPoisMS(X,β,π;C) =
1

n2

[
−

∑
(i,j)∈N

log(π)−
∑

(i,j)/∈N

log(1− π)+

+
∑

(i,j)/∈N

[
e−‖xi−xj‖

2+β −Cij
(
−‖xi − xj‖2 + β

)
+ log

(
1− e−e

−‖xi−xj‖
2+β
)]]

The optimal solution can be found via the HPoisMS algorithm described in Appendix E.1.

13.2. Zero-inflated Poison. The zero-inflated Poisson distribution (Lambert, 1992) ad-
dresses excess zero counts by assuming that zero count observations have two different
sources: “structural” and “sampling”. Structural zeros occur with some fixed probability π,
while sampling zeros correspond to a null Poisson outcome

Cij = 0 with probability π

Cij ∼ Pois(λij) with probability 1− π.
This yields the contact count distribution

P (Cij = c) =

{
π+ (1− π)e−λij , if c= 0

(1− π)
λcije

−λij

c! , if c > 0

which, when combined with the same log-link (2), produces the loss function

`ZIPoisMS(X,β,π;C) =
1

n2

[
−

∑
(i,j)∈N

log
(
π+ (1− π)e−e

−‖xi−xj‖
2+β
)
−

−
∑

(i,j)/∈N

log (1− π) +
∑

(i,j)/∈N

[
e−‖xi−xj‖

2+β −Cij
(
−‖xi − xj‖2 + β

)]]
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Zero-inflated Poisson metric scaling (ZIPoisMS), an optimization procedure that finds the
optimal X,β nd π, is presented in Appendix E.2.

13.3. Negative binomial. The negative binomial distribution models contact counts as

P (Cij = c) =
Γ(c+ r)

Γ(c+ 1)Γ(r)

λcijr
r

(λij + r)c+r
.

While the Poisson distribution implies Var(Cij) = E(Cij), the negative binomial mean - vari-
ance relationship is Var(Cij) = E(Cij) + E(Cij)2

r , with the nuisance parameter r enabling the
model to capture contact count overdispersion.

By linking the parameter λij to the pairwise distances ‖xi − xj‖ through equation (2)
we arrive at our negative binomial metric scaling (NBMS) criterion: find optimal X,β, r that
minimize the negative log-likelihood

`NBMS(X,β, r;C) =
1

n2

[ ∑
1≤i,j≤n

log Γ(r)− log Γ(Cij + r)− r log r+

∑
1≤i,j≤n

(Cij + r) log(e−‖xi−xj‖
2+β + r)−Cij(−‖xi − xj‖2 + β)

]
.

Algorithm details are provided in Appendix E.3.

14. Discrete distribution model comparison. We explore modeling contact counts by
means of the four distributions: Poisson, Hurdle Poisson, zero-inflated Poisson and negative
binomial, starting with simple visual comparisons. We use IMR90 chromosome 20 data and
we train the four models for a grid of degrees-of-freedom values df = 10,20 . . . ,100 using
a B-spline basis. Note that it is also possible to combine the two proposed advances, i.e.
distribution-based approach with the smoothing spline techniques, which we discuss in Ap-
pendix F. In the left panel of Figure 7 we present the dependence of the train score on the
model complexity. For each model we pick the “optimal” degrees-of-freedom using the elbow
heuristic (Tuzhilina, Hastie and Segal, 2020) and obtain the corresponding 3D chromatin re-
constructions. We plot these reconstruction as well as the heatmaps of Λ(X) = e−D

2(X)+β in
Figure 6. Comparing the images, we can conclude that HPoisMS and ZIPoisMS produce quite
similar results. At the same time, both of these models encourage more interaction between
before and after centromere parts of the reconstruction than PoisMS and NBMS; however, the
negative binomial model still demonstrates more interaction within these two blocks.

As indicated, concerns surrounding excess zeroes are considerably amplified when per-
forming 3D chromatin configuration reconstruction using exceedingly sparse single-cell Hi-
C data, in contrast with still sparse data from bulk cell experiments. Accordingly, to fur-
ther compare our suite of DBMS models, we use contact matrices for chromosome 1 from
eight single mouse embryonic stem cells (Stevens et al., 2017, Gene Expression Ominbus
(GEO) repository GSE80280) denoted C(1), . . . ,C(8). Using data at 100kb resolution re-
sults in n = 1924 genomic loci. We run the following experiment. We select at random
a subset of four indices T ∈ {1, . . . ,8} and calculate train and test contact matrices as
Ctrain =

∑
i∈T C

(i) and Ctest =
∑

i/∈T C
(i). We use Ctrain to fit a model, thereby obtaining the

reconstruction X and the optimal nuisance parameters. We subsequently use Ctest to evaluate
the model’s test score represented by the negative log-likelihood value. We repeat this exper-
iment N = 30 times and calculate the average test score (across the random splits) as well as
90% confidence interval.

In Figure 7 we plot the dependence of test performance on degrees-of-freedom value for
each of the four models. Comparing the PoisMS and NBMS curves (blue and green), we
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(a) Poisson (b) Hurdle Poisson (c) Zero-inflated Poisson (d) Negative binomial

FIG 6. Upper row: the projections of the resulting reconstructions obtained via four methods: PoisMS, HPo-
isMS, ZIPoisMS, NBMS. The degrees-of-freedom is set to the value picked by the elbow method. Bottow row: the
heatmaps for Λ = e−D

2(X)+β .

conclude that using negative binomial distribution for contact counts in place of Poisson does
not enhance the conformation reconstruction. On the other hand, we observe a substantial
improvement in the test score for the other two models, where the best log-likelihood value
is attained by ZIPoisMS with df = 15. The extreme sparsity of the contact matrix can explain
such a difference in performance: the data has around 99% of zero contact counts, thus, it
strongly benefits from zero-inflated models.

15. Discussion. In this paper we propose several improvements to the PoisMS method-
ology described in Tuzhilina, Hastie and Segal (2020). First, we suggest an alternative way
to encourage the reconstruction smoothness. Specifically, instead of using constraint (1), we
combine the PoisMS objective with the roughness penalty. The resulting SPoisMS optimiza-
tion problem (7) is a blend of PoisMS and smoothing splines, and, as we prove in Section
4, it has the following nice property: the reconstruction can be found by means of the orig-
inal PoisMS algorithm. The motivation for such an alternative smoothing technique was the
incompatibility of B-splines with block cross-validation and the inability to re-use the solu-
tion for smaller degrees-of-freedom as a warm start for the larger ones. We demonstrate the
advantages of SPoisMS via IMR90 data set the in Section 10.

Next, we extend PoisMS in a different direction. We propose three alternative models for
the contact counts: zero-inflated and Hurdle Poisson as well as Negative Binomial. These
distributions were motivated by various artifacts present in the Hi-C data such as sparsity
or diagonal dominance of the contact matrix. In section 12 we introduce a general frame-
work that allows us to build optimization algorithm for a wide class of distributions. We
subsequently use it for developing the ZIPoisMS, HPoisMS and NBMS techniques, which we
finally compare via the single cell data.

There is still much scope for future experiments. First, we plan to test the novel techniques
and validate our findings on data sets involving other chromosomes and resolutions. From
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FIG 7. Left panel: comparing four models via the bulk cell data. Each model was trained on the full contact
matrix and the train score is reported. The dashed lines represent the optimal degrees-of-freedom values detected
for each model by the elbow method. Right panel: comparing four models via the single cell data. Each model was
fitted on Ctrain and subsequently evaluated on Ctest. The plot represents the average (across different train-test
splits) test score vs degrees-of-freedom; the intervals correspond to the 90% CI bands of the test scores. The plot
evidences the superior performance of the ZIPoisMS models to the competitors.

a methodological point of view, we aim to enrich the class of models. In particular, we will
explore Hurdle Negative Binomial distribution, which would simultaneously address sparsity
and overdispersion. Moreover, we can refine the methods proposed in this paper by linking
the nuisance parameters to the chromatin spatial structure. As an example, in the Hurdle
model one can replace the common parameter π by πij , different for each pair of loci, which
we will link to the pair-wise distances via the logit link log( πij

1−πij ) = aD2(X) + b.

Another interesting and more practical research direction would be to develop a more
efficient implementation of the proposed algorithms. For instance, various acceleration tech-
niques such as Nesterov and Anderson acceleration are known to perform well when com-
bined with the projected gradient descent (see, for example, Tuzhilina and Hastie, 2021).
Thus, these techniques can significantly speed up the convergence of the main building block
WPCMS thereby enabling much faster computations for the DBMS solutions. Finally, the
sparsity of the contact matrix can be an important feature used for improving the storage and
computation time.

Importance of accurate 3D reconstructions from single-cell Hi-C data: allow dissection of
inter-cell structural variation unclouded by reliance of consensus reconstructions as derived
from bulk cell Hi-C experiments. Further, large numbers (∼ 103) of single cells, assayed
in differing conditions (e.g. cell cycle phase) and for differing cell types (Ramani et al.,
2017), allow a variety of compelling questions to be addressed. However, such analyses re-
quire means for capturing and quantifying structural differences, ideally more refined than
global mean square error following Procrustes alignment. We have commenced work pur-
suing these objectives via two distinct approaches. First, we are devising local Procrustes
alignment techniques, effected by iteratively using kernel weighting schemes along a current
alignment. Second, when provided with an alignment, either global or local, between two 3D
chromosome configurations and extracted per-locus between-structure residuals therefrom,
we have advanced use of the patient rule induction method (PRIM, Hastie, Tibshirani and
Friedman, 2009) to identify maximally divergent subregions (Segal, 2021). For any of these
methods to have merit, the input 3D structures need to be good approximations, underscoring
the potential of our DBMS approach to single-cell 3D reconstruction.



STATISTICAL CURVE MODELS FOR INFERRING 3D CHROMATIN ARCHITECTURE 19

Funding. E.T. was supported by Stanford Data Science scholarship. T.H. was partially
supported by grants DMS-1407548 and IIS 1837931 from the National Science Foundation,
and grant 5R01 EB 001988-21 from the National Institutes of Health. M.S. was partially
supported by grant GM-109457 from the National Institutes of Health.

SUPPLEMENTARY MATERIAL

Code and Data
Proposed methods and data sets are published in the R package DBMS; the software is avail-
able from Github (https://github.com/ElenaTuzhilina/DBMS).
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APPENDIX A: PROPERTY OF THE DEMMLER-REINSCH PENALTY MATRIX

LEMMA 1. If 1 = (1, . . . ,1)> ∈Rn is n-dimensional vector of ones andK is the smooth-
ing spline penalty matrix, then

• K1 = 0;
• 1>K = 0;
•
∑

1≤i,j,≤nKij = 1>K1 = 0.

PROOF. Denote K = UDU> the eigendecomposition of the penalty matrix. One can
show that K has two zero eigenvalues and the corresponding eigenvectors span the sub-
space of linear functions (see, for example, Green and Silverman, 1994). For simplicity, we
assume that the eigenvalues are sorted in increasing order in D, so d1 = d2 = 0 and matrix U
has the following structure: U = (U0,U

⊥
0 ), where U0 ∈ Rn×2 corresponds to the null-space

of K and U⊥0 ∈Rn×(n−2) is the orthogonal space. Therefore, if g(t) is some linear function
of t and G= (g(t1), . . . , g(tn))>, we get G ∈ span(U0) as well as (U⊥0 )>G= 0. This leads
us to the relation

KG= UD
(

U>0 G
(U⊥0 )>G

)
= U

( (
d1 0
0 d2

)
U>0 G

0

)
= 0.

In particular, setting g(t) = 1 implies KG = K1 = 0. The second relation 1>K = 0 auto-
matically follows form the fact that K is positive semi-definite (PSD), which immediately
implies

∑
1≤i,j,≤nKij = 1>K1 = 0.

APPENDIX B: DEGREES-OF-FREEDOM

LEMMA 2. The projection step of SPoisMS solves the following penalized PCMS prob-
lem for some S̃ independent of λ:

minimize
X∈Rn×3

1

n2
‖S̃ −XX>‖2F + λ tr(X>KX).

PROOF. Recall, that SPoisMS is equivalent to PoisMS with C replaced by

Cλ =C − λn2

2
K.

Suppose that the current reconstruction guess at the beginning of a new WPCMS loop is X0.
Thus, the working response in the WPCMS problem is Zλ =D2(X0)− Cλ

W + 1.
Next, each gradient step within the WPCMS loop updates the similarity matrix as

S =XX> −Φ(W ∗ (Zλ −D2(X))) =

=XX> −Φ(W ∗ (Z −D2(X)))︸ ︷︷ ︸
S̃

+
λn2

2
K.

Here we use the linearity of the operator Φ(·) and Lemma 1 implying

Φ(K) =K − diag(K · 1) =K.

As a result, the projection step will minimize the PCMS loss as

‖S −XX>‖2F = ‖S̃ +
λn2

2
K −XX>‖2F =

= ‖S̃ −XX>‖2F − λn2 tr(X>KX) +
λ2n4

4
‖K‖2F .

Removing the terms independent of X and dividing by n2 this leads us to the optimization
problem from the lemma.
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LEMMA 3. The degrees-of-freedom for one-dimensional penalized PCMS

minimize
x∈Rn

1

n2
‖S̃ − xx>‖2F + λx>Kx

can be calculated as

df =

n∑
i=1

1

1 + λn2

‖x0‖2di
,

where x0 ∈Rn is the solution to the problem.

PROOF. Again, note that the one-dimensional problem can be solved in two ways. One
can rewrite it as

minimize
x∈Rn

∥∥(S̃ − λn2

2
K
)
− xx>

∥∥2

F

and find x via the eigendecomposition of S̃− λn2

2 K. Alternatively, one can apply alternating
algorithm. If the current solution guess is x0 then updated x can be found via solving a spline
problem

minimize
x∈Rn

1

n2
‖S̃ − xx>0 ‖2F + λx>Kx⇐⇒

minimize
x∈Rn

1

n2
‖y− x‖2F +

λ

‖x0‖2
x>Kx.(25)

Here we set y = S̃ · x0

‖x0‖ and reparameterize the problem as x := ‖x0‖ · x. The second ap-
proach implies that at the convergence point we can replace the original PCMS problem
by (25). Thus, we can borrow the definition of degrees-of-freedom from regular smoothing
splines to compute df for one-dimensional penalized PCMS. The last step is to plug-in the
corresponding values to formula (14).

APPENDIX C: POISMS AND SPOISMS RECONSTRUCTION COMPARISON

To understand how well formula (17) aligns our SPoisMS and PoisMS reconstructions from
Section 8 we introduce the notion of discrete curvature as follows. For a 3D conformation

X =

(
−x>1 −
...
−x>n−

)
we calculate directed edges ~ei = ~xi+1 − ~xi and compute the average angle

deficit as

κ(X) =
1

n− 2

n−2∑
i=1

∠(~ei;~ei+1).

This quantity measures how wiggly the reconstruction X is, and can serve as an approxima-
tion to the formal curvature for the corresponding smooth one-dimensional curve γ.

Now we take the SPoisMS reconstructions calculated for the grid of penalty factors

λ= 104,103,100,10,1,0.1

and the accordant PoisMS reconstructions with

df = 5,9,15,27,47,83.

We plot the average angle deficit for each reconstruction in Figure 8. As expected, the re-
construction wiggliness increases with the growth of the model complexity (increase in df
or decrease in λ). Moreover, the plot suggests that the corresponding SPoisMS and PoisMS
reconstructions have similar curvature.
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FIG 8. Dependence between the average angle deficit (measuring how wiggly is a reconstruction) and the model
complexity (controlled by df in PoisMS and λ in SPoisMS). The plot demonstrates that the corresponding SPoisMS
and PoisMS reconstructions have similar curvature, which implies the accuracy of the proposed formula for
estimating degrees-of-freedom.

APPENDIX D: SPOISMS PERFORMANCE EVALUATION

LEMMA 4. The optimization problem

minimize
γ∈Γ, β∈R

`train
SPoisMS(γ,β;C,λ).

is equivalent to solving the reduced PoisMS problem

(26) minimize
XO∈Rn×3, β∈R

`PoisMS
(
XO, β;COO −

λ|O|2

2
(K/KUU )

)
.

HereK/KUU =KOO−KOUK−1
UUKUO is the Schur complement of the penalty matrix, which

has block structure similar to C , i.e. K =
(
KOO KOU
KUO KUU

)
.

PROOF. First we note that Denote the solution by X =
(
XO
XU

)
. We begin with rewriting

the loss function in matrix form as

`train
SPoisMS(X,β;C,K,λ) = `PoisMS(XO, β;COO) + λ tr(X>KX).

Next, we notice that the first part of the loss does not depend on XU . If XO is fixed then XU
can be found as a minimum of

tr(X>KX) = tr(X>OKOOXO + 2X>UKUOXO +X>UKUUXU ).

Taking the derivative w.r.t. XU and setting it to zero leads us to the stationary point
XU =−K−1

UUKUOXO. Plugging it back to the original loss function implies

`train
SPoisMS(X,β;C,K,λ) =

= `PoisMS(XO, β;COO) + λ tr(X>OKOOXO + 2X>UKUOXO +X>UKUUXU ) =

= `PoisMS(XO, β;COO) + λ tr
(
X>O(KOO −KOUK−1

UUKUO)XO
)

=

= `SPoisMS(XO, β;COO,K/KUU , λ).
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Therefore, the optimal XO can be found by solving the SPoisMS problem for the contact
matrix COO and the penalty matrix K/KUU , i.e.

(27) minimize
XO∈R|O|×3, β∈R

`SPoisMS(XO, β;COO,K/KUU , λ).

Note that in the main paper we demonstrated that the SPoisMS problem with the Demmler-
Reinsch penalty matrix can be efficiently solved via the PoisMS algorithm. We extend this
result to the optimization (27) as well. From the penalty matrix property K1 = 0 one can de-

rive the system on equations involving the blocks of K, i.e.

{
KOO1 =−KOU1
KUO1 =−KUU1

, leading

us to analogous property of the Schur complement

(K/KUU )1 =KOO1−KOUK−1
UUKUO1 =KOO1+KOU1 = 0.

Following the proof in the main paper, one can show that the smoothing penalty in the
loss function `SPoisMS(XO, β;COO,K/KUU , λ) can be absorbed into the PoisMS part thereby
proving the equivalence between (27) and the PoisMS problem

(28) minimize
XO∈R|O|×3, β∈R

`PoisMS
(
XO, β;COO −

λ

2
(K/KUU )

)
.

APPENDIX E: DISTRIBUTION BASED METRIC SCALING

Denote Γ the matrix with element Γij = 1Cij=0 and note that the derivatives of the log-link
Λ = e−D

2(X)+β w.r.t. D2(X) and β are

∇D2Λ =−Λ and ∇βΛ = Λ.

We will use these relations to derive the update steps for the optimization algorithm.

E.1. Hurdle Poisson. Recall that the loss function has the following form

`HPoisMS(X,β,π;C) =
1

n2

[
−

∑
(i,j)∈N

log(π)−
∑

(i,j)/∈N

log(1− π)+

+
∑

(i,j)/∈N

[
λij −Cij logλij + log

(
1− e−λij

)]]
.

We first compute the derivatives of the loss w.r.t. D2. Note that

∇D2e−Λ = e−Λ ∗Λ and ∇βe−Λ =−e−Λ ∗Λ.

Denote M = Λ
1−e−Λ , then (up to 1

n2 scale)

∇D2 = (1− Γ) ∗
(
−Λ +C − e−Λ ∗Λ

1− e−Λ

)
= (1− Γ) ∗ (C −M)

∇2
D2 = (1− Γ) ∗ Λ ∗ (1− e−Λ)− e−Λ ∗Λ2

(1− e−Λ)2
= (1− Γ) ∗M ∗ (1− e−Λ ∗M)

Thus we can calculate the weights and the working response for the second-order approxi-
mation and apply WPCMS to update the reconstruction X .
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Now we deal with the nuisance parameters. First, by analogy with the distance matrix one
can compute the first and second order derivatives w.r.t. β (up to 1

n2 scale)

∇β =
∑

(i,j)/∈N

(Mij −Cij) and ∇2
β =

∑
(i,j)/∈N

Mij(1− e−λijMij).

We will use these derivatives to find optimal β when applying Newton’s method. Next, we
note that the optimal value for the Bernoulli parameter π can be found from the equation

∇π =
|N |
π
− n2 − |N |

1− π
= 0.

This leads us to the explicit formula π = |N |
n2 . Combining all the above steps leads us to the

following HPoisMS algorithm.

Hurdle Poisson metric scaling (HPoisMS)

Set π = |N |
n2 , then repeat until convergence:

1. For the current guess of X and β compute SOA:
• evaluate Λ = e−D

2(X)+β and M = Λ
1−e−Λ

• calculate ∇D2 = (1− Γ) ∗ (C −M) and ∇2
D2 = (1− Γ) ∗M ∗ (1− e−Λ ∗M)

• compute W =∇2 and Z =D2(X)− ∇
∇2

2. Solve WPCMS problem with W and Z thereby updating X .
3. For fixed X run Newton’s method to update β. Repeat until convergence:

• evaluate Λ = e−D
2(X)+β and M = Λ

1−e−Λ

• calculate ∇β =
∑

(i,j)/∈N (Mij −Cij) and ∇2
β =

∑
(i,j)/∈N Mij(1− e−λijMij)

• update β := β − ∇
∇2 .

E.2. Zero-inflated Poisson. In this section be build an optimization algorithm for the
zero-inflated model. Let a= π

1−π and rewrite the ZIPoisMS loss function as

`ZIPoisMS(X,β,π;C) =

=
1

n2

[
−

∑
(i,j)∈N

log
(
π+ (1− π)e−λij

)
−

∑
(i,j)/∈N

log (1− π) +
∑

(i,j)/∈N

[λij −Cij logλij ]
]

=

=
1

n2

[
−

∑
(i,j)∈N

log
(
a+ e−λij

)
−

∑
1≤i,j≤n

log (1− π) +
∑

(i,j)/∈N

[λij −Cij logλij ]
]

We first calculate the derivatives of the loss w.r.t. D2 (up to 1
n2 scale):

∇D2 =−Γ ∗ Λ ∗ e−Λ

a+ e−Λ
+ (1− Γ) ∗ (−Λ +C) =

=−Γ ∗ Λ

aeΛ + 1
+ (1− Γ) ∗ (C −Λ)

∇2
D2 =−Γ ∗ −Λ ∗ (aeΛ + 1) + aeΛ ∗Λ2

(aeΛ + 1)2
+ (1− Γ) ∗Λ =

= Γ ∗Λ ∗ ae
Λ(1−Λ) + 1

(aeΛ + 1)2
+ (1− Γ) ∗Λ
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Next, by analogy, we compute the derivatives w.r.t. the intercept β (up to 1
n2 scale):

∇β =
∑

(i,j)∈N

λij
aeλij + 1

−
∑

(i,j)/∈N

(Cij − λij)

∇2
β =

∑
(i,j)∈N

λij
aeλij (1− λij) + 1

(aeλij + 1)2
+

∑
(i,j)/∈N

λij

We will use these formulas to update the intercept via Newton’s method. Now, we handle the
nuisance parameter π. Unlike the Hurdle model, there is no explicit formula for optimal π;
therefore, we also apply Newton’s method to update it at each iteration. This requires us to
compute the derivatives w.r.t. π (up to 1

n2 scale)

∇π =−
∑

(i,j)∈N

1− e−λij
π+ (1− π)e−λij

+
∑

(i,j)/∈N

1

1− π
=

=−
∑

(i,j)∈N

eλij − 1

π(eλij − 1) + 1
+

∑
(i,j)/∈N

1

1− π

∇2
π =

∑
(i,j)∈N

(
eλij − 1

π(eλij − 1) + 1

)2

+
∑

(i,j)/∈N

1

(1− π)2

We combine all the steps in the ZIPoisMS algorithm stated below.

Zero-inflated Poisson metric scaling (ZIPoisMS)

Repeat until convergence:

1. For the current guess of X,β and π compute SOA:
• evaluate Λ = e−D

2(X)+β and a= π
1−π

• calculate
∇D2 =−Γ ∗ Λ

aeΛ + 1
+ (1− Γ) ∗ (C −Λ)

∇2
D2 = Γ ∗Λ ∗ ae

Λ(1−Λ) + 1

(aeΛ + 1)2
+ (1− Γ) ∗Λ

• compute W =∇2 and Z =D2(X)− ∇
∇2

2. Solve WPCMS problem with W and Z thereby updating X .
3. For fixed X,π compute a= π

1−π and run Newton’s method to update β.
Repeat until convergence:
• evaluate Λ = e−D

2(X)+β

• calculate

∇β =
∑

(i,j)∈N

λij
aeλij + 1

−
∑

(i,j)/∈N

(Cij − λij)

∇2
β =

∑
(i,j)∈N

λij
aeλij (1− λij) + 1

(aeλij + 1)2
+

∑
(i,j)/∈N

λij

• update β := β − ∇
∇2 .

4. For fixed X,β compute Λ = e−D
2(X)+β and run Newton’s method to update π.

Repeat until convergence:
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• calculate

∇π =−
∑

(i,j)∈N

eλij − 1

π(eλij − 1) + 1
+

∑
(i,j)/∈N

1

1− π

∇2
π =

∑
(i,j)∈N

(
eλij − 1

π(eλij − 1) + 1

)2

+
∑

(i,j)/∈N

1

(1− π)2

• update π := π− ∇
∇2 .

E.3. Negative Binomial. We extend the methodology to the negative binomial model.
We start with taking the derivatives of the loss function

`NBMS(X,β, r;C) =
1

n2

[ ∑
1≤i,j≤n

log Γ(r)− log Γ(Cij + r)− r log r+

+
∑

1≤i,j≤n
(Cij + r) log(λij + r)−Cij logλij

]
w.r.t. D2 leads us to the following equations (up to 1

n2 scale)

∇D2 =−(C + r) ∗Λ

Λ + r
+C = r

C −Λ

Λ + r

∇2
D2 = r

Λ ∗ (Λ + r) + Λ ∗ (C −Λ)

(Λ + r)2
= r

Λ ∗ (C + r)

(Λ + r)2

We will use these derivatives to calculate the WPCMS parameters and, subsequently, update
the reconstruction X . Next, we calculate the derivatives w.r.t. β (up to 1

n2 scale)

∇β =−r
∑

1≤i,j≤n

Cij − λij
λij + r

and ∇2
β = r

∑
1≤i,j≤n

λij(Cij + r)

(λij + r)2

and use them to update β via Newton’s method. Finally, to find optimal r we compute the
derivatives w.r.t. this nuisance parameter (up to 1

n2 scale):

∇r =
∑

1≤i,j≤n
ψ0(r)−ψ0(Cij + r)− log r+ log(λij + r) +

Cij − λij
λij + r

∇2
r =

∑
1≤i,j≤n

ψ1(r)−ψ1(Cij + r)− 1

r
+

1

λij + r
− Cij − λij

(λij + r)2

Here ψ0(·) and ψ1(·) correspond to the di- and tri-gamma function. We conclude this section
with the NBMS algorithm.

Negative binomial metric scaling (NBMS)

Repeat until convergence:

1. For the current guess of X,β and r compute SOA:
• evaluate Λ = e−D

2(X)+β

• calculate ∇D2 = rC−Λ
Λ+r and ∇2

D2 = rΛ∗(C+r)
(Λ+r)2

• compute W =∇2 and Z =D2(X)− ∇
∇2

2. Solve WPCMS problem with W and Z thereby updating X .
3. For fixed X,r run Newton’s method to update β.

Repeat until convergence:
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• evaluate Λ = e−D
2(X)+β

• calculate ∇β =−r
∑

1≤i,j≤n
Cij−λij
λij+r

and ∇2
β = r

∑
1≤i,j≤n

λij(Cij+r)
(λij+r)2

• update β := β − ∇
∇2 .

4. For fixed X,β compute Λ = e−D
2(X)+β and run Newton’s method to update π.

Repeat until convergence:

• calculate

∇r =
∑

1≤i,j≤n
ψ0(r)−ψ0(Cij + r)− log r+ log(λij + r) +

Cij − λij
λij + r

∇2
r =

∑
1≤i,j≤n

ψ1(r)−ψ1(Cij + r)− 1

r
+

1

λij + r
− Cij − λij

(λij + r)2

• update r := r− ∇
∇2 .

APPENDIX F: SMOOTH DISTRIBUTION-BASED METRIC SCALING (SDBMS)

By analogy with the SPoisMS loss (9) one can combine the smoothing spline technique
with general distribution-based metric scaling leading to the SDBMS loss

(29) `SDBMS(X,Ω;C,K,λ) = `DBMS(X,Ω;C) + λ tr(X>KX)

Following the outline from Section (12) one can build the optimization algorithm as follows.
First, we recall that tr(KS(X)) = −1

2 tr(KD2(X)), so the penalty term in the SDBMS
loss is a linear function of D2(X). The updated first derivative involved in the second order
approximation is therefore ∇̃ = ∇ − λ

2K while the second derivative ∇2 stays the same.
The new working response matrix involved in the WPCMS is Z̃ = Z + λ

2
K
W . Finally, as

Φ(K) =K the gradient step in PGD update is

S̃ =XX> −Φ(W ∗ (Z +
λ

2

K

W
−D2(X))) = S +

λ

2
K

whereas the projection step minimizes the loss

`PCMS(X; S̃) = ‖S −XX>‖2F + λ tr(X>KX).

In other words, adding the smoothing penalty to the original DBMS problem is equivalent to
replacing the PCMS projection step with its smoothing spline analog.
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