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1. Introduction 
As of June 12th 2020, there have been 7,739,944 cases and 428,337 deaths as a result                

of the COVID-19 pandemic as per the World Health Organization COVID-19 Dashboard [6].             
The countries around the world have imposed restrictions in the form of the lockdown to               
combat the rate of the spread and flatten the curve describing the number of patients admitted                
to hospital per day. 
 

The current status of the pandemic varies between countries and is typically described             
as before the peak or after the peak. The general opinion is that we should expect a second                  
wave of the outbreak in the oncoming months before vaccination becomes available to the              
general public. All governments are planning their post-lockdown reopening procedures and           
methods to monitor the spread of the disease. However, limited tested capabilities, varying             
quality of the tests, and a large number of asymptomatic carriers make this task particularly               
challenging.  
 

As a part of this project, we would like to attempt to diagnose the patient based on the                  
cough recording and general patient information collected by the hospital staff. The hope is              
that if the diagnosis method proves to be effective, a preliminary test could be performed               
without visiting the hospital and hence, reducing the strain on the medical staff and              
infrastructure. This task was approached by Imran et al. [12] and provided hope that the               
COVID-19 test could be effectively framed as a classification model learned from the data. In               
this work, we are further investigating if this kind of test is a possibility based on the data                  
provided by the Wadhwani Institute of Artificial Intelligence. 
 

In this paper, we will present a roadmap of our process and preliminary results. Since 
we have not yet finished a thorough or rigorous treatment of this task, we will attempt to 
document our process in a productive manner for further research and experimentation. This 
work is by no means comprehensive and will hopefully serve as a point of reference for 
ongoing discussion and research. 
 
The contributions of this work are two-fold: 

1) A framework that takes a raw cough recording, cuts the audio file to the relevant                
parts with the cough, reduces the noise and performs classification. 
2) Comparison of different classification approaches. 



 

2. Dataset 
Data description 

The data contains 34 patients tested for COVID-19, 16 positive cases and 18 negative              
cases. For each patient the avaliable information can be grouped into four feature categories:              
general info (age and sex), symptoms (sore       
throat, shortness of breath, runny nose, loss       
of smell or taste, fever, fatigue, diarrhoea,       
cough, body aches, no symptoms), respiratory      
conditions (sinus, copd, bronchitis, asthma     
and other), sound features (3 cough sounds       
per each patient). In total the data contains 97         
cough sounds (some patients did not provide       
all three cough recordings). We plot samples       
feature distributions vs. disease status. Note      
that people with present respiratory conditions      
are strongly underrepresented. 

 

 
 
Sound data preprocessing 

Our cough classification framework consists of the subsequent parts discussed in the            
following subsections: 
1) Input audio file: audio file with the following properties: wav format, single channel, 16 kHz               

sample rate and 256 kbps bitrate  
2) Cough cropping: detects which parts of the provided audio file contain cough.            

Subsequently, it cuts the file into two distinct audio files, with cough and with other sounds                
which are assumed to be noise, 



 

3) Noise reduction: uses the provided audio file with noise to suppress the noise in the cough                
audio file, 

4) Signal Processing: converts the audio file into the set of features used for classification, 
5) Classification model: classifies the provided features as a Covid-19 Cough or Non-Covid-19            

Cough. 
 
Cough cropping  

Given the limited size of the dataset at hand, there is a risk that the model may overfit to                   
unwanted signals, such as the method of recording or other hospital ward-related sounds.             
Hence, prior to the cough-specific audio analysis and classification, it is necessary to identify if               
and when the cough is present in the recording and crop the audio file accordingly. To achieve                 
this, we are using a general audio classification architecture, called Ubicoustics [6], capable of              
classifying a wide range of frequently occurring sounds in the environment, such as leaves              
rustling, engine noises, water running, dialogues, coughs, and many more. The model is based              
on the pre-trained YouTube-8M VGG-16 [7] architecture with a modified last layer, and trained              
on sound set with substantial audio      
augmentation including amplification   
augmentation, persistence augmentation and    
mixing augmentation using sound effect     
libraries such as AudioSet [8] and Freesound       
[9]. The model enables us to classify the audio         
with 1 Hz prediction frequency which is utilized        
to determine whether the cough is present in        
the recording and identify the time window of        
its occurrence. This information allows us to       
crop and cut the recording to cough audio file         
and noise audio file using SciPy library [10] as         
shown in the Figure on the right. 
 
Noise reduction 

Due to the wide range of collected samples that are from differing environments, it was               
important to control as many of the potential variables as possible. A major problem comes               
from this type of crowdsourced data is the lack of ability to control for the sounds in the                  
environment and the quality of the microphone. One major factor that was important to              
standardizing the dataset was to remove as much background noise as possible from all the               
samples.  

At this point, the cough file is already cropped around the actual cough and saved as a                 
.wav file. The cough cropping algorithm from the previous stage also saves a portion of the                
cough clip that is prior to the actual cough sound. This prior is critical for noise reduction. We                  
consulted and used a sound-processing library called Noise Reduce (see [4]). The library             
works by removing a certain frequency from the target sound clip by isolating the signal using                
Fast Fourier Transforms. The background noise can thus be removed by using the prior              



 

sample saved from the cough cropping. As a result, using the library with the prior and actual                 
cough as inputs leads to an output that has had its background noise reduced. 

Overall, the noise reduction plays an important role in standardizing the dataset,            
especially when the data is crowdsourced and difficult to control. Now, the data is one step                
closer to being cleansed enough to be used for very sensitive analysis. 
 
Signal Processing 

In this part we convert already preprocessed coughs recordings into a set of features.              
For each cough we extract the following list of the features (26 features in total): 

● Mel-frequency cepstral coefficients (MFCCs) - 20 frequencies that characterizes the          
overall shape of a spectral envelope,  

● Zero-crossing rate - measures the rate of sign-changes along a signal, 
● Energy level - measures the signal power,  
● Spectral centroid indicates at which frequency - characterizes the location of sound            

“centre of mass” and computes as a weighted mean of the frequencies,  
● Spectral rolloff - measures the “shape” of the signal and represents the frequency at              

which high frequencies decline to zero,  
● Spectral bandwidth - determines the resolution of the signal, 
● Spectral flatness - quantifies the tonal quality. 

This list was created based on the careful literature review on cough classification and              
cough detection techniques (see [1]-[4]) and the features were obtained by means of the              
Python librosa library. Note that each feature is a time series of length compatible with the                
length of the original cough wave, so the final feature is an average of the corresponding time                 
series, which helps us not only significantly reduce dimensions, but also avoid the problems              
with the different feature lengths.  

 

 
 
 



 

Feature Preprocessing 
We output the features from the signal processing stage into a feature matrix, with each               

training example corresponding to the features of a single cough. We merged this feature              
matrix with a matrix that includes information about each patient, such as age, sex, and               
symptoms. Each patient had up to three cough samples, and thus up to three examples in the                 
data. 

We prepared the feature matrix for the models by removing irrelevant features such as              
submission date, device, test location, and file names. Then, we separated “symptoms” and             
“respiratory conditions” into indicator variables for each type of symptom or condition. After this              
step, we had the following list of features: 'user_id', 'age', 'sex', 'sore throat', 'shortness of               
breath', 'runny nose', 'no symptoms', 'loss of smell or taste', 'fever', 'fatigue', 'diarrhoea',             
'cough', 'body aches', 'sinus', 'other', 'copd', 'bronchitis', 'asthma', 'disease_status', 'mfcc[1-20]',          
'zero_crossing_rate', 'rms', 'spectral_centroid', 'spectral_rolloff', 'spectral_bandwidths', and      
'spectral_flatness'. 

The original data included a number of patients with inconclusive COVID status, so the              
next step was to filter out the samples that were not labeled as either positive or negative.                 
Additionally, we removed one patient with no data about gender. Finally, we separated the              
samples into a training set and a held-out test set, ensuring that both sets had an equivalent                 
proportion of positive versus negative patients, and that samples from the same patient went              
into the same data set. 

After the feature preprocessing we ended up with  
● 94 samples divided into 74 train samples and 20 test samples;  
● 43 features containing 2 general info features, 5 respiratory condition features, 10            

symptom features and  26 sound features. 
 
3. Models 

We tested three different types of classification models on the COVID cough data set: 
logistic regression, support vector machines, and neural networks. 
 
Logistic regression 

We start with the logistic regression model. Since the number of features is compatible              
with the train/test size, to prevent overfitting, the model requires some regularization. To make              
the features comparable we need to standardize non-categorical features (which are the sound             
features only). We consider three types of penalties: lasso (or l1 penalty), ridge (or l2 penalty)                
and elastic net penalty (the sum of l1 and l2 penalty with equal weights). To choose the optimal                  
penalty type as well as the optimal value of penalty factor C we use 5-fold cross-validation                
measuring AUC score (one can consider accuracy as well, but is known to be biased on size                 
of the test data). To compare the importance of the features across the feature types we also                 
check the model performance separately for each general info, respiratory condition, symptom            
and sound features.  
 
 
 



 

Support Vector Machine (SVM) 
We implemented SVMs as a second binary classification method, using C-Support           

Vector Classification in the scikit-learn library [5]. We chose to use SVMs so that we can                
experiment with different types of transformations to the data using kernels. In comparison to              
logistic regression, this would allow us to model a nonlinear decision boundary. We began by               
standardizing non-categorical features, like we did in logistic regression. Then we used grid             
search with group cross-validation to find the optimal hyperparameters for the model. Using             
group cross-validation ensured that samples that came from the same patient were not             
separated between the train and validation sets. We tested multiple types of SVM kernels:              
polynomial, sigmoid, linear, and rbf, as well as a range of other hyperparameters such as               
regularization parameters and gammas. 

Once we identified hyperparameters to use, we evaluated the resulting model by            
training it on the entire training set, and calculating its accuracy on the held-out test set, as well                  
as plotting the model’s receiver operating characteristic curve. 

In order to characterize the importance of different types of features on our model, we               
trained the model separately on the symptom features, age and sex features, and sound              
features, recording the resulting accuracy. 
 
Fully Connected Neural Network 

A simple fully connected neural network was implemented using the PyTorch library            
[11]. The architecture design parameters were: a number of hidden layers, a number of hidden               
units, activation function between layers, and dropout probability. We used a simple black box              
optimizer called Gaussian Process Bandits to determine the design of the neural network             
based on the aforementioned training set. The final design contains a single hidden layer, 28               
hidden units in each hidden layer, ReLU activation function between layers, and a dropout              
probability of 12.89% between layers. The network was optimized using the Cross-Entropy            
Loss and Adam optimizer with default parameters. Further optimization of the architecture            
design is recommended when more data is available.  
 
Temporal CRNN (TCRNN) 

This model differs from the previous models in that the input is the full cough sounds                
themselves, instead of hand-engineered features, thereby preserving much of the information           
in the data. In order to investigate the feasibility of detecting COVID-19 from cough sound               
itself, we experimented with a classification model that only took the cough sound as input,               
with no additional features. In particular, the input was the raw .wav file of the cough segment                 
of each audio file. This input was fed into a Temporal Convolutional Recurrent Neural Network,               
termed TCRNN with a combined CNN and LSTM architecture, outputting a binary classification             
of COVID-19 positive or negative. This temporal structure enables variable length input, which             
is useful for our task.  

 
I. Spectrogram and STFT features 

In more detail, the data is first transformed into a spectrogram, a temporal sequence of               
spectra. As in images, neighboring spectrogram bins of natural sounds in time and frequency              



 

are correlated; but in sound production, so are        
harmonics, or frequencies that are multiples of the        
same base frequency. Thus we can add a third         
dimension with the magnitudes of the harmonic series        
so that spatially local models such as a CNN can take           
these into account [13]. Therefore, we first obtain the         
short-time Fourier transform (STFT) of the signal to        
calculate the spectrogram, which serves as the       
features for our model.  
 
 

II. CRNN 
CNNs and RNNs both have their respective advantages and disadvantages in audio            

classification. CNNs have a fixed receptive field, which can be limiting but also modified, while               
RNNs can in theory utilize an unlimited temporal context, but in practice may require              
modifications to achieve this. Ideally, CRNNs offer the best of both words by using the               
convolutional layers to extract local information, and the recurrent layers to combine it over a               
longer temporal context. This classification model employs an LSTM to better capture long             
term temporal dependencies. In summary, the CNN takes the spectrogram as input and             
consists of a sequence of 2D convolutions, followed by a bi-directional LSTM. The full model is                
described here (https://github.com/ksanjeevan/crnn-audio-classification#models) with the     
modification of removing a maxpool layer to accommodate our data size. 

 
4. Results 
Logistic regression 

According to the cross-validation plots, the performance of the model on the full feature              
set is poor; the best average AUC score across the folds is achieved for ridge regression with                 
C = 1 and equal to 0.51 (which is almost a random coin flip). Note also that the 1SE intervals                    
for the cross validation score are very wide (for the best model it is 0.51 +/- 0.2) indicating the                   
significant instability in the estimated test score and strong dependence of the model on the               
train/test split.  

 
Further, we fit the model for each group of features separately. First, we run logistic               

regression (without penalty) for age+sex as predictors and get test AUC = 0.83. Next we test                
sound, symptoms and respiratory condition features plotting the train/test score for different            
hyperparameter values. Notice that for respiratory condition features the AUC is equal to 0.5              

https://github.com/ksanjeevan/crnn-audio-classification#models


 

regardless of the hyperparameter values, which can be explained by the fact that people with               
present respiratory conditions are strongly underrepresented. Moreover, the sound feature          
AUC scores do not exceed 0.5 for any type of penalty which implies that logistic regression is                 
not able to distinguish ill and healthy patients using sound features only. Finally, the best test                
AUC value for symptom features is 0.53 for lasso penalty with C = 100. 

 
 
We conclude that general info features have the most         
predictive power, symptom features have moderate      
predictive power, and sound and respiratory condition       
features have no predictive power. We plot the lasso         
coefficients for the model with symptoms only; the most         
important symptoms are diarrhea, loss of smell or taste and          
fatigue.  
 
 

 
Support Vector Machines 

Through grid search, we found that the optimal hyperparameters for our data include an              
rbf kernel, a regularization parameter ‘C’ of 2.1, and a ‘gamma’ parameter of ‘auto’. During               
cross-validation, the model with these parameters achieved an accuracy of 0.59. However, on             
the test set, it achieved an accuracy of 0.5, meaning that its accuracy was only as good as                  
random. Plotting its ROC curve below, we can see that the AUC was 0.6. Other metrics are                 
reported in the table at the end of the section. 

 
Next, we evaluated the model accuracy after       
training it on symptoms only, age and sex only,         
and sound features only. The accuracies      
achieved for each of the three categories,       
respectively, was 0.3, 0.7, and 0.3. Thus, our        
model suggests that age and sex alone are more         
predictive than any of the other features, and, like         
with logistic regression, that our sound features       
probably do not contain much useful information       
for the model. 
 



 

 
Neural networks 

The model was trained on the preprocessed features and evaluated on the test set. The               
results are presented in the table below. The accuracy of 0.7 suggests that it is likely that the                  
model optimized for age and sex alone, as noticed in previous sections, and that we have                
reached the limit of extractable information from the preprocessed features.  
 

To account for this, we have returned to the raw and cropped cough files and trained a                 
Temporal Convolutional Recurrent Neural Network. Performing 5-fold cross validation, we          
averaged the metrics in each of the 5 runs to obtain the TCRNN performance with an accuracy                 
of 58%, precision of 0.55, recall of 0.52 and f1-score of 0.53. 
 

The following table presents a comparison of our classification models with the metrics             
of accuracy, precision, recall and f1-score. Our classes are relatively balanced, but we still              
report macro-average for precision, recall and f1-score.  
 

Model Accuracy Precision Recall F1 Score 

SVM 0.50 0.52 0.52 0.49 

Fully Connected NN 0.70 0.67 0.67 0.67 

TCRNN 0.58 0.55 0.52 0.53 

 
 
5. Discussion and Conclusion 
Result Analysis 
The key takeaways from our results are: 

- Logistic regression and SVM show no predictive power of preprocessed sound features, 
- Age and sex are moderately predictive given the dataset, 
- The fully connected neural network which accounted for the accuracy of ~70% has             

reached the limit of extractable information from the preprocessed features. It implies            
that feature preprocessing has resulted in the significant loss of information prohibiting            
successful classification of the recording, 

- We posit that using raw cough audio files or at least maintaining some form of temporal                
information in the features is key to classify the recording, 

- Our results from the TCRNN demonstrate potential promise on the feasibility of using             
cough sound to detect COVID-19. In particular, we achieved ~58% accuracy on 5-fold             
validation on just .wav alone, which shows there may be some signal in the cough               
sounds. The model is able to overfit on the small training data which signifies that it is                 
complex enough for our small dataset and more data and experimentation are required             
to fully determine the efficacy of this method. Therefore, we tentatively posit that there is               
signal in the cough sound for detecting COVID-19, while stating that this is only an initial                



 

investigation and we need to thoroughly vet our process and perform analysis on a              
more substantial dataset. In addition, minimal tuning and data augmentation was           
performed, so there could be improvements in performance in this area. 
 

Conclusion 
In summary, we have provided a pipeline for processing the audio recordings,            

segmenting the cough sound, conducting signal processing, extracting features and classifying           
the presence of COVID-19. We focused on breadth and explored several possibilities for most              
of these components, especially the classification task. One of our main challenges while             
working on this project was only having access to a very small data set. The small number of                  
training examples and lack of a diverse set of examples led to high variation in the results.                 
Furthermore, we believe that careful feature extraction is essential to successful classification,            
as averaging of the signal processing features over the time domain resulted in a loss of                
important data. Potential for future work includes:  

 
- Re-evaluation of classification models with more data 
- Augment the raw cough audio files with preprocessed features and model the            

classification task using the recurrent neural network, 
- Perform confounder analysis (age and sex). It is necessary to decide whether these are              

features we want to aid our prediction or biases we want to filter out. A potential                
exploration is modeling linear confounders with a GLM and regressing out biases. 

- More in-depth analysis of the TCRNN model along with more tuning and analysis. 
- Extension from binary classification to adding another class for unknowns, or outputting            

a confidence score. 
 

In conclusion, there are several intentional choices to be made in the task of detecting               
COVID-19 from cough sounds. A preliminary prediction from this work is that cough sounds              
may not have high enough accuracy to replace testing, but can potentially serve as a helpful                
triage or diagnostic tool.  
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