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Abstract 
 

Chromatin landscapes provide critical insight into the transcriptional regulation of 
the genome. Current approaches for profiling chromatin landscape require 
multiple high-throughput sequencing assays, creating the desire for a single 
cost-effective assay. Here we assess the ability of nascent transcription assay - 
Global Run-On and sequencing (GRO-seq) and Precision Run-On and 
sequencing (PRO-seq) -- to impute H3K4me3, H3K27ac, H3K27me3, and 
DNase-seq using XGBoost, Dense Neural Network, and Convolutional Neural 
Network models.  

 
Introduction 
 
Chromatin landscapes provide critical insight into the transcriptional regulation of the genome. 
Transcriptional regulatory elements, such as promoters, enhancers, and insulators can alter 
gene expression by promoting or inhibiting chromatin compaction, transcription initiation, and 
RNA polymerase binding. Epigenetic changes such as DNA methylation and histone 
modifications also contribute significantly to transcriptional regulation. 
  
Current methods to characterize chromatin landscapes involve multiple high-throughput 
genomic assays. Chromatin immunoprecipitation and sequencing (ChIP-seq) assays of 
DNA-bound transcription factors (TF) and histone modifications is a common approach, but is 
limited in that a separate assay is required for each target since the approach relies on a 
high-affinity antibody for the targeted TF or histone modification. ChIP assays are commonly 
accompanied by DNase-I hypersensitivity and sequencing (DNase-seq), which measures open 
chromatin regions, to characterize chromatin landscapes. However, performing multiple assays 
on a sample is both time intensive and expensive; therefore, the ability to profile chromatin state 
from a single, cost-effective assay would be extremely valuable. 
  
Methods for measuring the production of nascent RNA provide direct evidence of local 
transcription. Two such methods are Global Run-On and sequencing (GRO-seq) and its 
successor, Precision Run-On and sequencing (PRO-seq). These assays can map RNA 
polymerase II active sites by isolating and sequencing RNA that is being actively transcribed. 
Benefit of capturing active transcription is that it can capture expression that may be too short 



lived to show up in steady state expression assays. Since chromatin landscapes are highly 
associated with local transcription and PRO-seq directly measures local transcription, we 
hypothesize that multiple chromatin landscape profiles can be imputed from a single PRO-seq 
assay. 
  
In this paper we introduce deep learning methods for imputing histone modification (H3K4me3, 
H3K27ac, H3K27me3) and DNase-seq profiles from PRO-seq data. We benchmark this 
approach against XGBoost model.  
  
Related Work 
 
There has been previous research both into computational methods for imputing chromatin 
landscape from other sequencing assays and from GRO/PRO-seq. However, the methods 
described in this paper describe the first known research into deep learning for imputing 
chromatin regulatory profiles from GRO/PRO-seq data.  
 
The most relevant deep learning approaches for predicting sequential regulatory activity were 
published by Kelley et al. in 2016 and 2018. In 2016, the authors published the Basset model to 
predict DNase 1 hypersensitivity from a window of 500-1000 base pairs. In 2018 the authors 
improved on Basset by developing the Basenji model to predict cell type-specific epigenetic and 
transcriptomic profiles from DNA sequence.The Basenji architecture uses dilated convolutions 
to incorporate a significantly larger base pair receptive field, 131 kilobases (kb), which allows for 
modeling of distal regulatory interactions. Specifically the architecture consists of 4 standard 
convolution layers, pooling in between layers by 2, 4, 4, and 4 to a multiplicative total of 128, 7 
dilated convolution layers, and a final convolution layer. They tested the model on a dataset 
consisting of reads for 593 ENCODE DNase-seq, 356 Roadmap DNase-seq, 1704 ENCODE 
histone modification ChIP-seq, 603 Roadmap ChIP-seq, and 973 FANTOM5 CAGE 
experiments. Compared to Basset, the Basenji quantitative predictions achieved a greater 
AUPRC for all DNase-seq experiments, increasing the average from 0.435 to 0.577 and median 
from 0.449 to 0.591.  
 
Danko et al. are have previously published work on identifying regulatory elements from nascent 
transcription with the machine learning tool, discriminative Regulatory Element detection from 
GRO-seq (dREG). The dREG model was first published in 2015 and employs support vector 
regression (SVR) to detect predict transcriptional regulatory elements from GRO/PRO-seq data. 
The authors have published a new, optimized implementation of dREG on bioRxiv. They trained 
the model using 3.3 million sites from five independent PRO-seq or GRO-seq experiments in 
K562 cells and evaluated the performance on two held out datasets, a sixth PRO-seq 
experiment in K562 and a GRO-seq experiment  in GM12878. dREG predicted 34,677 and 
71,131 TIRS in the K562 and GM12878 test datasets, respectively. The authors compared 
these predicted TIRS to DNase-seq and H3K27ac ChIP-seq data as orthogonal validation of 
TIR recovery, and found overlap with 81.3% or 96.1% of the DNase-seq and 58.4% or 71.8% of 
the H3K27ac sites.  



Data and Preprocessing  
 
Data for training the model comes from the multiple genomic assays done on human biosample 
GM12878. CHip-seq assays for histone modifications H3K4me3, H3K27ac, and H3K27me3, 
and DNase-seq come from the ENCODE Project. GRO-seq data for the same biosample comes 
from the Dowell Lab and BioFrontiers at the University of Colorado.  
 
All the data was binned by 50 base pairs (bp) using the pyBigWig stats function, which takes the 
average value over the 50bp range. In keeping with the dREG model that made predictions 
based on a 5 kb window around each base, we created a dataset consisting of window of 200 
bins (200 bins * 50bp = 5000bp) around each bin. We also created a dataset using a 128 kb 
(2560 bin) window around each bin, as this was around the window size used in the Basenji 
architecture. The output label was a single 50bp bin from the fold-change-over-control bigWig 
file in all four prediction tasks (H3K4me3, H3K27ac, and H3K27me3, and DNase-seq). We 
explored different levels of smoothing for the binned outputs using the baseline XGBoost model, 
and found that gaussian filtering with a sigma around 10 yields the best results.  
 
Baseline Model 
 
Our baseline model was XGBoost gradient boosting. We ran XGBoost separately on each of the 
four predictive tasks and for both linear regression and binary classification. In linear regression, 
we used root mean squared error as the evaluation metric. In the classification task, we set the 
objective to binary classification using hinge loss with area under the precision-recall curve as 
the evaluation metric. The models were trained on the first quarter of chromosome 1 and tested 
using the second quarter of chromosome 1 using a window size of 5000bp. Results are shown 
in Table 1 and Figure 1.  
 

Table 1: XGBoost evaluation 

 
 
The H3K4me3 and H3K27ac models were performing relatively well on both regression and 
binary classification. As regression is the more valuable task, we decided to focus on regression 
for the deep learning models. In addition, based on the results of this model we only used the 
histone mark and DNase data that was smoothed using gaussian filtering of sigma 10 for the 
deep learning models.  
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Figure 1: XGBoost Model Performance and Comparison of Smoothing Levels  
a) Representative regions of XGBoost regression prediction vs. observed profiles for the four prediction 
tasks. The top panels were produced without smoothing the binned labels and the bottom panels were 
produced using gaussian filtering with sigma of 10.  
 
Dense Neural Network 
 
We next built a simple Dense Neural Network and achieved slightly higher performance than 
XGBoost (Table 2). The architecture consisted of five sequential dense layers with relu 
activations. We used the adam optimizer and root mean squared error as the loss function. We 
trained on chromosomes 1 and 3 and validated on chromosome 10 using the 5000bp window.  

 
 
Figure 2: DNN Model 
Performance 
Representative regions 
from the validation 
chromosome for each of 
the four tasks. Predicted 
profile in orange and 
observed profile in blue.  
 
 
 
 
 
 
 
 
 



Table 2: DNN Model Evaluation 

 
 
Convolutional Neural Network 
 
As there could be distal regulatory interactions that we’re missing using the 5 kb window, we 
also wanted to build a convolutional neural network that took in a window of 128 kb. Our final 
CNN model has 6 convolutional layers, each followed by max-pooling, followed by a single fully 
connected layer. The structure is displayed in the appendix. While we explored multi-task 
models, we found out that we could achieve better performance with separate single-task 
models for each target. For the training done for H3K4me3 mark, our prediction had 0.678 
Pearson correlation score with true labels, outperforming the DNN model both on the Pearson 
Correlation and Root Mean Squared Error.  
 

 
Figure 3: CNN Model Performance 
a) Representative regions of CNN prediction vs. observed profiles for the H3K4me3 prediction task.  

 
Discussion 
 
We achieved similar performance with all models what we tried. The XGBoost baseline 
performed the worst, but only marginally worse than the DNN and CNN. The models performed 
better on H3K4me3 and H3K27ac compared to H3K27me3. There could be a biological 
explanation for this difference, since H3K4me3 and H3K27ac are associated with transcriptional 
activity whereas H3K27me3 is associated with transcriptional repression. Another possible 
explanation is that the H3K27me3 data contains more noise than the other two histone marks 
and therefore requires additional data cleaning to achieve optimal performance. The models 
also don’t perform as well on DNase. This is most likely due to the fact that only approximately 
3% of DNase-hypersensitivity sites localize to transcriptional start sites (TSSs) and only 5% lie 



within 2.5 kb of a TSS (Thurman, R. E. et al., 2012). The models trained using a 5 kb window 
are therefore unable to capture the vast majority of regulatory interactions with 
DNase-hypersensitivity sites.  
 
While the pearson correlations between the predicted profiles and the observed profiles weren’t 
extremely high, the correlations for H3K4me3 and H3K27ac were comparable to or even better 
than the results published in the Basenji paper; we achieved test set correlations above 0.6 for 
both H3K4me3 and H3K27ac whereas the median correlations published in the Basenji paper 
for the two histone marks were 0.501 and 0.502, respectively. However, the Basenji paper did 
achieve better results for DNase and H3K27me3. This dichotomy could be due to the different 
architectures or the different input data types; perhaps DNase and H3K27me3 are better 
captured using sequence information than with PRO-seq profile. Future work using different 
architectures could help answer that question.  
 
Implementing Feedback 
 
Initial Work 
The first model we attempted in this project was a 
multi-task convolution neural network taking a 10,000 bin 
range and using two-dimensional positive and negative 
GROseq input to predict four corresponding 10,000 bin 
regions for H3K4me3, H3K27ac, H3K27me3 and DNase 
(see Figure). During the multiple experiments with this 
CNN architecture we faced with the following difficulties: 

1. The model did not learn a lot with epochs. 
Explanation and solution: this phenomenon can be 
explained by the fact that the data is highly 
imbalanced, meaning that only small percent 
(around 1%) of output values is non-zero. As a 
solution we implemented mask MSE that calculates 
the mean square error only for bins with non-zero 
output values and used it as a loss function training the CNN.  

2. The training loss was decreasing, whereas, the test loss did not improve. 
Explanation and solution: the possible explanation of this problem is that the multi-task 
model was training to predict all histone modifications simultaneously. It seems that 
there is a weak correlation between these four outputs and, therefore, adjusting CNN 
model parameters to predict one output can spoil the prediction for another output 
making the total loss function fluctuating around the same average spoiled value. We 
concluded that multi-task CNN is not a correct approach to this problem and, as a result, 
used the separate single-output CNN model for each histone modification.  

3. The training loss values were higher than the test loss values.  
Explanation and solution: the reason for this loss performance is that the activity regions 
are not uniformly distributed across the DNA. For example, the first and the last 10% of 



the bins usually do not contain a lot of histone activity, therefore, splitting the data into 
90% and 10% of train and test data respectively the mask loss value could be much 
lower on a test set comparing to the one on a training set. One of the possible solutions 
is to shuffle the data before the split.  

 
First Draft Feedback 

1. We received consistent feedback to first train a simpler baseline model, before deploying 
a deep learning approach in order to gauge the complexity and scope of the task. We 
did so by running the XGBoost algorithm, which helped us pinpoint the data processing 
that we needed to enhance.  

2. Once we settled on the correct data processing techniques we made significant progress 
in training the neural net models, which was also a suggested weakness of our first draft.  

3. Another question that we saw was why we modified the original Basenji architecture and 
whether that was causing our issues with model training. We in fact iterated over a 
significant number of CNN models, but found out that once the data was processed 
correctly they had similar performance. We iterated through models with different kernel 
size, number of layers, strides, filter numbers, skip connections and fully connected 
layers.  

4. Another suggested weakness of our approach was only training on a limited amount of 
data (1-5 chromosomes).  This still remains as a work in progress, as we focused on 
iterating through multiple models and focused on speed. Now that we have finalised a lot 
of our approach we can definitely expand our training and test sets to include all 
available chromosomes.  

5. We had originally proposed a RNN based architecture as well, which we had 
unsuccessfully tried to train. We believe that RNN based models are appropriate for 
sequence based data, such as ours. Unfortunately, since we focused on iterating 
through convolutional based models, we did not have enough time to circle back to 
training RNN models. 
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Appendix  
 
Convolutional Neural Network Structure 

 
 


