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1 Introduction
The three-dimensional organization of the genome plays a critical role in regulating gene expression

and maintaining cellular function. However, the intricate architecture of chromatin makes direct
spatial observation infeasible. Advances in high-throughput techniques—most notably Hi-C—have
enabled researchers to reconstruct chromatin structure indirectly by capturing contact frequencies
between genomic loci. These contact maps serve as a statistical and mathematical proxy for the
underlying spatial organization of DNA within the nucleus.

Motivated by the need to understand how chromatin organization differs among cell types, this
study leverages single-cell Hi-C data to uncover patterns and structural variations across four distinct
cell lines: Hela, GM12878, HAP1, and K562. The central goal is to employ explainable statistical
methods to identify and characterize the chromatin interaction patterns that differentiate these cells.
By doing so, we aim to contribute insights into the relationship between genome architecture and
cellular identity.

Our approach integrates a range of methodologies drawn from both classical statistical learning
and modern computational biology. Foundational concepts from texts such as Introduction to Statis-
tical Learning (with particular emphasis on resampling methods, unsupervised learning via principal
component analysis, and clustering techniques) underpin our analysis. In addition, we critically review
several key papers that have advanced the field of single-cell Hi-C analysis.

The remainder of this report documents the literature review, mathematical derivations related to
these methods (detailed in the Appendix), and our experimental analyses conducted on the Ramani
dataset [4]. By synthesizing advanced statistical learning techniques with high-dimensional genomic
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data, we seek to elucidate the structural underpinnings that distinguish cell types, thereby enhancing
our understanding of chromatin architecture in a cellular context.

2 Literature Review
Ramani introduced the sciHi-C method, which employs combinatorial indexing for high-throughput

single-cell Hi-C analysis [5]. Their paper motivated our work by detailing a robust preprocessing
pipeline, filtering long-range intrachromosomal contacts (i.e., > 20 kb) and excluding self-interactions,
to generate high-quality contact matrices. This method informed our own data-loading procedures
and matrix alignment strategies.

Liu proposed an unsupervised embedding approach for scHi-C data by combining specialized dis-
tance measures with multidimensional scaling (MDS) [2]. They evaluated several metrics—including
CDP-JSD, HiCRep (using stratum-adjusted correlation), GenomeDISCO, and HiC-Spector—to cap-
ture biologically meaningful variations in chromatin structure. Our interest in this paper stemmed
from its emphasis on choosing appropriate distance measures, which is crucial for reliable downstream
analysis.

Kim applied Latent Dirichlet Allocation (LDA) to single-cell Hi-C data, treating each cell as a
"document" and each chromatin interaction as a "word." [1] This cross-disciplinary approach from
natural language processing effectively extracts latent topics, revealing cell type-specific interaction
patterns. The innovative use of LDA to overcome data sparsity and uncover underlying chromatin
structures provided key insights that influenced our exploration of unsupervised methods for genomic
data.

Recent advances in single-cell Hi-C (scHi-C) technologies have enabled unprecedented exploration
of cell-to-cell variability in 3D chromatin organization, offering insights into its role in gene regulation
and cellular identity [6]. However, the extreme sparsity (0.25–1% of contacts captured) and technical
heterogeneity of scHi-C data pose significant challenges for computational analysis. Current methods,
such as Higashi [6], scHiCluster [7], and scDEC-Hi-C [3], address these limitations through diverse
strategies: Higashi employs hypergraph representation learning to impute sparse contact maps and
integrate multimodal epigenomic signals, while scHiCluster applies convolution- and random walk-
based imputation to enhance clustering accuracy. Deep generative models like scDEC-Hi-C further
unify embedding and clustering tasks in an end-to-end framework. Despite these advances, critical
gaps persist. First, many methods rely on computationally intensive imputation (e.g., hypergraphs or
random walks) that may not scale efficiently for high-resolution data [6, 7]. Second, most frameworks
treat embedding and clustering as separate steps, potentially compromising performance [3]. Third,
coverage heterogeneity and multiscale 3D feature variability (e.g., compartments, TAD-like domains)
remain inadequately addressed, limiting robust cell-type identification.

To overcome these limitations, we propose a streamlined workflow combining low-rank approxima-
tion, nonlinear dimensionality reduction, and clustering. Low-rank approximation offers a computa-
tionally efficient alternative to existing imputation methods by denoising sparse matrices while preserv-
ing structural patterns. Subsequent integration of UMAP—a nonlinear embedding technique—may
better capture chromatin interaction dynamics compared to linear methods like PCA. By unifying
these steps into a single pipeline, our approach aims to mitigate technical biases, enhance scalability,
and improve clustering accuracy for scHi-C data. This strategy addresses unmet needs in the field,
particularly for studies prioritizing interpretability and efficiency in analyzing complex 3D genome
architectures.

3 Methods
The study workflow is summarized as shown in Figure 1. The details are provided in the sections

3.1, 3.2, 3.3, 3.4.
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Figure 1: Summary of the study workflow

3.1 Data Preprocessing and Matrix Construction

The data used in this study were obtained from [4]. The dataset comprises four cell types with
markedly different sample sizes, as illustrated in Figure 2. There are total of N = 2611 sample of cells
included in this study, containing 1622 Hela cells (62.12% of sample), 917 HAP1 cells (35.12%), 48
K562 cells (1.84%), and 24 GM12878 cells (0.92%).

For each selected cell, contact information is recorded based on the genomic positions associated
with each interaction (e.g., chromosome 1 at location 1, chromosome 2 at location 2, etc.). Only
intrachromosomal contacts are included in the dataset, where all the interactions between different
chromosomes are ignored. These contacts are then aligned to generate a binary matrix representation
of fixed dimensions. Specifically, cell is denoted by C and is represented by a 2965 × 2965 matrix,
where each entry is defined as

Cij =
{

1, if a contact between loci i and j is observed,

0, otherwise.

To mitigate biases arising from self-contacts, the main diagonal entries (which represent self-
contacts) are set to zero.

Each contact matrix is structured as a block-diagonal matrix composed of 23 chromosome-specific
submatrices:

C = diag(C1, C2, . . . , C22, CX),

where each block Cj corresponds to the contact matrix for chromosome j. Further, we denote the ith
sample cell as C(i) = diag(C(i)

1 , C
(i)
2 , . . . , C

(i)
22 , C

(i)
X ).

The 2965 in size is determined by the total sum of the number of genomic loci of each chromosome,
which is listed in Figure 3. For instance, chromosome 1 is represented as C1 with the size of 250 by
250, and chromosome 22 is C22 with the size of 36 by 36. Notably, chromosomes appearing earlier in
the cell’s sequence are generally larger, with the exception of chromosome X. Following the approach
described in Ramani’s work, cells with fewer than 1000 unique contacts were excluded to ensure data
quality.
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Figure 2: Counts comparison for different cell types in dataset

Figure 3: Chromosome Sizes Comparison
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3.2 Low-Rank Approximation of Contact Matrices

Due to the high dimensionality and inherent noise in the raw binary matrices, direct analysis is
computationally inefficient and may lead to spurious results. Therefore, we performed a low-rank
approximation to extract the most informative features of each matrix.

For each cell matrix C(i), we compute its low-rank approximation M (i) by solving the optimization
problem:

min
M(i)

∥C(i) − M (i)∥2
F subject to rk(M (i)) ≤ r,

where ∥ · ∥F denotes the Frobenius norm and r is a predetermined rank that balances noise reduction
and information preservation.

3.3 Dimensionality Reduction and Visualization

To facilitate the identification of structural disparities among cells, each denoised matrix M is
vectorized by stacking its columns to form a high-dimensional feature vector. Principal Component
Analysis (PCA) is then applied to these vectors. PCA projects the data into a lower-dimensional
space by capturing the directions of maximal variance, which not only aids in visualization but also
highlights the genomic regions contributing most significantly to the observed differences. Detailed
steps are included in Appendix 5.

Subsequently, the PCA loadings are used as inputs for Uniform Manifold Approximation and
Projection (UMAP). UMAP is employed to embed the cells into a three-dimensional space, providing
a clear visual representation of potential clusters. These clusters are then analyzed to assess whether
they correspond to known or biologically distinct cell types, thereby validating the effectiveness of the
preprocessing and low-rank approximation steps.

Overall, this pipeline, from raw data processing through low-rank approximation and dimension-
ality reduction, enables robust and interpretable analysis of single-cell Hi-C data.

3.4 Clustering and Accuracy Assessment

For each cell sample, we first processed the data using a series of dimensionality reduction tech-
niques, starting with a low-rank approximation, followed by PCA, and finally, UMAP, to obtain a
three-dimensional embedding X ∈ RN×3 (where N is the number of cells). K-means clustering (with
k = 4) was then applied to the rows of X to group the cells. We further compare the clustering results
with the four cell types.

Since the K-means algorithm assigns arbitrary labels to clusters, an optimal mapping between the
predicted labels and the true labels is required. Let L = {1, 2, 3, 4} be the set of labels assigned by
K-means, and T = {GM12878, Hela, HAP1, K562} be the set of true labels. Define P = {π : L → T |
π is a one-to-one mapping} as the collection of all bijections from L to T .

For each sample i, the K-means algorithm produces a predicted label ŷi ∈ L. The mapping π then
assigns a true label π(ŷi) ∈ T to the prediction. Our goal is to find the mapping π∗ that maximizes
the total number of correctly assigned labels. In other words, if yi ∈ T denotes the true label for the
i-th sample and I{·} is the indicator function, then

π∗ = arg max
π∈P

N∑
i=1

I{π(ŷi) = yi}.

The clustering accuracy is then defined as the fraction of samples that are correctly classified by
the optimal mapping:

Accuracy = 1
N

N∑
i=1

I{π∗(ŷi) = yi}.

This approach effectively aligns the cluster assignments with the true cell types by exhaustively
evaluating all possible label mappings, which is equivalent to solving a linear assignment problem on
the contingency table of predicted versus true labels. The reported accuracy reflects the best possible
alignment between the unsupervised cluster assignments and the known cell type labels.
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4 Preliminary Results
Given a specific cell C, we can find its average intrachromosomal counts per loci by dividing all

intrachromosomal contacts by the sum of the total genomic loci of 23 chromosomes.
Figure 4a shows a boxplot of the average contact counts per loci for each cell type, while Figure 4b

displays the corresponding density distributions. The density curve normalizes the distributions onto
the same scale, facilitating direct comparison, and revealing differences in their shapes. The result
from the boxplot closely aligns with the density distribution, with Hela cells having the higher mean of
average contact per loci, then HAP1, K562, and GM12878 having the lowest average contact counts
per loci.

An unpaired t-test was performed on each pair of distinct cell types’ average contact count distri-
butions, with the null hypothesis that both distributions share the same mean. The comparison results
are presented in Table 1. As shown, all pairs except GM12878 vs. K562 yield p-values significantly
below 0.05, indicating strong evidence that their distributions differ in their means, which agrees with
the visualizations in Figure 4a and Figure 4b.

Comparison t-statistic p-value Significant (p<0.05)
GM12878 vs HAP1 -2.61193 0.00914707 True
GM12878 vs Hela -4.44322 9.45423e-06 True
GM12878 vs K562 -0.533242 0.595555 False
HAP1 vs Hela -10.8191 1.05962e-26 True
HAP1 vs K562 3.2454 0.00121326 True
Hela vs K562 5.88375 4.83609e-09 True

Table 1: T-test comparisons among cell lines.

(a) Boxplot of distributions of average contact
counts per loci, where the vertical axis represents
the average of contact counts per loci of individual
cells.

(b) Density distribution of average contacts, where
the horizontal axis represents the average of con-
tact counts per loci of individual cells, and the
vertical axis is the corresponding density.

Figure 4: Average counts per loci distribution of four cell types

On the other hand, for each cell type, we can find the average contact for each genomic loci,
concatenate the results for the upper half of C and create a more detailed visualization on the cell
level instead of the sample level. We are taking the upper triangular region for the cell since the matrix
is symmetric. As shown in Figure 5, for each subgraph, the horizontal axis represents the concatenated
location of genomic loci of the upper triangular region of the cell, where the vertical axis represents
the average contact counts for the loci. The genomic region is marked for each chromosome. From the
figure we can observe some interesting pattern, for example K562 and GM12878 has similar average
genomic distribution, whereas HAP1 and Hela are more similar.

For each cell type, the averaged contact matrix can also be plotted to guide our analysis. For
instance, Chromosome 4 of average Hela is plotted in Figure 6a, Chromosome X of averaged HAP1 is
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Figure 5: Concatenated Average Contacts per loci for four cell types.

plotted in Figure 6b, and Chromosome 1 of average K562 is plotted in Figure 6c.

(a) Averaged C4 of Hela (b) Averaged CX of HAP1 (c) Averaged C1 of K562

Figure 6: Three averaged chromosomal matrices.

The following analysis was performed on a subsample of size n = 172, and was resampled 30 times
to confirm the proposed method’s robustness.

Following the methods described above, the preprocessed contact matrices were stored as {C(i)},
where each matrix C(i) comprises chromosome-specific submatrices {C

(i)
j } for j ∈ {1, 2, . . . , 22, X} and

i ∈ {1, 2, . . . , n}. Figure 7 shows three representative chromosomal submatrices from sample C(14). In
these figures, black marks indicate the presence of contacts. Note that the contact density decreases
with increasing distance from the diagonal.

After loading the chromosomal contact matrices for each cell, we computed a low-rank approxi-
mation for each chromosome using a rank r = 50. For each cell C(i), the approximation is denoted
as

M (i) = diag(M (i)
1 , M

(i)
2 , . . . , M

(i)
22 , M

(i)
X ),

where each M
(i)
j is the block corresponding to the chromosome j from the optimal low-rank approxi-

mation of C
(i)
j . Figure 8 shows three approximated chromosomal matrices corresponding to those in

Figure 7. The entries of these matrices, previously binary, are now continuous values reflecting contact
intensity.
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(a) C
(14)
1 (b) C

(14)
14 (c) C

(14)
X

Figure 7: Three samples of chromosomal matrices for the 14th sample cell of GM12878 Cell Type

(a) M
(14)
1 (b) M

(14)
14 (c) M

(14)
X

Figure 8: The low rank approximated matrices corresponding to the three previous examples

The best rank is determined by finding the elbow point of the total approximation error

1
n

n∑
i=1

∥C(i) − M (i)∥2
F

, identifying that using 72 rank approximation should help us find a balance between explainability
in variance and data complexity. However, we used rank r = 50 as the optimal rank to construct the
further analysis based on the empirical fact that r = 50 outperforms r = 72 in all cases in terms of
clustering accuracy.

Using the set of low-rank approximated matrices {M (i)} as representations of the sample cells, we
performed PCA to extract the dominant variance components. Each matrix M (i) was vectorized, and
the resulting vectors were stacked to form a data matrix P ∈ Rn×29652 , where each element corresponds
to a feature and nrepresents the size of subsample taken. The data were centred by subtracting the
mean of each column, and PCA was then applied to determine the directions that preserve maximum
variance. As shown in Figure 10, the first two principal components provide a clear two-dimensional
separation among the four cell types, with Hela cells (in orange) distinctly isolated. In Figure 11, the
histogram shows the cumulative variance explained by the top 20 principal components, and the red
line overlay shows the variance explained by each principal component. The total variance explained
by the top 20 is approximately 40%.

Figure 12 displays the detailed PCA loadings, where brighter regions indicate a stronger contribu-
tion to the observed variance. Across all chromosomes, we can observe a diagonal-block pattern with
higher PCA loadings, having higher importance in helping us differentiate four cell types by carrying
more information. Also, we can see that there appears to be a cross-shaped pattern colored in blue in
most chromosomes, where lower PCA loadings are associated with. Ruling out the areas with lower
PCA loadings and focusing on regions with significant PCA loadings might help us further extrapolate
the characteristics of cell types.
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Figure 9: Total Error with respect to rank used for approximation

Subsequently, we applied Uniform Manifold Approximation and Projection (UMAP) to the PCA
loadings to further enhance the visualization in a three-dimensional space. As illustrated in Figure
13b, both Hela and K562 cells form distinct clusters, effectively differentiating them from the other
groups. More details of the effect of number of principal components taken on the embedding results
can be fount in Figure 14.

Figure 10: Representing top 2 principal components of the approximated matrices

The number of principal components used for dimensionality reduction on the approximated ma-
trices was chosen based on the performance of subsequent embedding and clustering. After manually
testing various options, it was found that using 20 principal components provided the best overall
results. Detailed comparisons of the clustering accuracy using 10, 20, and 50 principal components
for both the original and approximated matrices are presented in Table 2, where each round of the
experiment is performed on 30 subsamples of size n = 175. The Table 2 shows the mean clustering
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Figure 11: Total Variance explained by PCs and the variance explained by each PC

Figure 12: Loadings of PCA on matrix
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(a) UMAP of original samples (b) UMAP of processed samples

Figure 13: UMAP embeddings comparisons

(a) 10PCs on Original Data (b) 20PCs on Original Data (c) 50PCs on Original Data

(d) 10PCs after Approximation (e) 20PCs after Approximation (f) 50PCs after Approximation

Figure 14: UMAP embeddings for original and approximated data. The top row displays embeddings
generated from the original data, while the bottom row shows those based on low-rank approximated
data. The first, second, and third columns correspond to analyses performed using 10, 20, and 50
principal components, respectively.
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accuracy and corresponding 95% confidence interval.

10PCs 20PCs 50PCs
Original 45.48% (±1.06%) 47.38% (±1.35%) 50.48% (±1.46%)
Approximated 79.96% (±1.88%) 80.14% (±1.76%) 76.69% (±2.19%)

Table 2: Clustering accuracy comparison using different numbers of principal components

To quantify visual separability of the cell types in 3D embeddings obtained by UMAP we apply K-
Means clustering and assess the clustering performance as discussed in Section 3.4. We further compare
the performance with applying K-Means clustering to the principal components representations of cells
on the raw contact data, which results in an accuracy of only about 51%. However, after processing the
cells using low-rank approximation, PCA reduction, and UMAP embeddings, the clustering accuracy
increases dramatically to 82%. This substantial improvement demonstrates the effectiveness of the
proposed methods in enhancing clustering performance.

5 Discussion
In our study, we observed that the selection of rank in the low-rank approximation stage has a

significant impact on clustering performance. While the traditional elbow method in the loss curves
provides a convenient heuristic for choosing the rank, our results indicate that alternative rank selec-
tions can sometimes yield superior performance. This suggests that a fixed rank might not be optimal
for all chromosomes, as each contributes differently to the overall heterogeneity among cells. Future
work should focus on developing dynamic, chromosome-specific strategies for rank selection to further
enhance clustering accuracy.

Moreover, our proposed methods, which combine low-rank approximation, PCA reduction, and
UMAP embeddings, led to a remarkable improvement in clustering accuracy—from 51% with the raw
matrix representations to 82% after processing. This dramatic increase underscores the potential of
our approach to effectively capture and leverage the underlying structure in the data for better cell
clustering.

It is important to note, however, that the significance of our experimental results may be some-
what limited by dataset imbalance. Some cell types were underrepresented, which likely affected the
overall performance of the clustering algorithms. In fact, when focusing solely on the binary classi-
fication and clustering of the two cell types with the largest sample sizes, we observed even higher
accuracy. Therefore, employing a more balanced dataset in future experiments could provide even
more compelling evidence of the method’s effectiveness and generalizability.
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Gram-Schmidt & QR Decomposition
In R2, two arbitrary vectors x1, x2. Define one orthonormal vector v1 = x1, find projection of x2

onto v1 as Projv1x2. Note that v2 = x2 − Projv1x2 and Projv1x2 = β21v1. Since v2 · v1 = 0 and
(x2 − β21v1) · v1 = 0, resulting in β21 = x2·v1

v1·v1
. Therefore we have v2 = x2 − x2·v1

v1·v1
v1 as the second

orthonormal vector.
In R3, three arbitrary vectors x1, x2, x3. By previous step we can find v1 = x1 and v2 = x2 − x2·v1

v1·v1
v1

which span the space of span(x1, x2). Projecting x3 onto span(v1, v2), we have v3 = x3−Projx1,x2x3 =
x3 − (β31v1 + β32v2). By the fact v3 ⊥ v1, v3 ⊥ v2 we have v3 · v1 = v3 · v2 = 0, resulting in
v3 = x3 − x3·v1

v1·v1
v1 − x3·v2

v2·v2
v2.

In Rn, n arbitrary vectors x1, x2, · · · , xn. Following the previous n−1 steps we have the v1, · · · vn−1
orthogonal vectors, which spans span(x1, x2, · · · , xn−1). Projecting xn onto span(v1, · · · , vn−1) we
have vn = xn − xn·v1

v1·v1
v1 − xn·v2

v2·v2
v2 − · · · − xn·vn−1

vn−1·vn−1
vn−1.

Above process inductively holds but is not tidy enough in terms of normalizing the vectors. The
following process links Gram-Schmidt with the idea of regression, which provides a more intuitive
interpretation of Gram-Schmidt.

Note that during each step we are finding the projection of a new original vector on to the existing
span of previous normal vectors. In R2, assume that we already have X1 = V1, and |

X2
|


represents the second original vector. Now we assume that we are finding the projection of this X2
onto V1, which is equivalent to minimizing the Frobenius error between the projected vector and the
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original vector. Now this problem can be transformed to an minimization task:

min
β1

∥X2 − V1β1∥2
F

, which is directly related with the regression concept and its closed form solution can be found directly
by β1 = (V T

1 V1)−1V T
1 X2. Taking this idea to the Rn case, where Xn represents the n − th original

vector, and matrix V has form  | | |
V1 V2 · · · Vn−1
| | |


has previous found n − 1 orthogonal vectors as columns. Therefore the tasks is to find the solution
βn−1 for

min
β

∥Xn − V βn−1∥2
F

, and similarly the close form solution is βn−1 = (V T V )−1V T Xn. Here the (V T V )−1 is a n−1 by n−1
diagonal matrix with each Vi’s norm squared ∥Vi∥2 on the diagonal entries. Generally speaking, the
resulting V matrix can be found using Xβ−1, where β is the matrix with coefficients βi as column. For
instance the first column should be with 1 on first row with trailing 0s, the second column should be
with −β1 on first row, 1 on second, and trailing 0s. This forms the upper triangular matrix β, serves
as the transformation from original matrix X to the Gram-Schmidt result V . Here, if we reorder the
equation, we have X = V β, which is exactly the QR decomposition of matrix X, with V = Q as the
basis matrix and β = R as the upper triangular matrix with coefficients recorded.

Positive Semi Definite Matrix
A matrix A is positive semi-definite means that the xT Ax ≥ 0 for any column vector x, and A

has to be symmetric. The property guarantees that the matrix A has non-negative eigenvalues, which
can be useful when determining the best number of principal components that can represent a contact
matrix.

Low Rank Approximation of Matrix
Given an original matrix X ∈ Rm×n, we can find low rank approximated matrix M ′, where

rk(M ′) ≤ r, such that M ′ = argmin
rk(M)≤r

∥X − M∥2
F , where M ′ is the truncated SV D given rank r.

Step one is to transform into SV D. Assume M where rk(M) ≤ r, let M = UAV T , here A ∈ Rm×n

with rk(M) ≤ r. So we have

∥X − M∥F =
∥∥∥UΣV T − UAV T

∥∥∥
F

=
∥∥∥U(Σ − A)V T

∥∥∥
F

, since U and V T are orthogonal matrices, we have ∥X − M∥F = ∥Σ − A∥F .
Step two is to minimize, where we want to find the best A with rank less than r that minimizes

∥Σ − A∥F . Σ is diagonal, A can only be diagonal to minimize the distance to Σ, otherwise off-diagonal
non-zero entries will only enlarge the difference. Thus A is diagonal, with aii = σii, if i ≤ r and 0
otherwise. Simply saying A is the matrix resulting from setting σii = 0 when i > r in Σ.

Step three is to find the Frobenius norm of distance. A = Σr = diag(σ1, σ2, · · · σr, 0 · · · ), so we
have

∥Σ − A∥F = ∥Σ − Σr∥F =
p∑

i=1
(σii − aii)2 =

p∑
i=r+1

(σ2
ii)

.
Step four is to prove the distance found is the minimum. Let A′ be the matrix with rank ≤ r, so

∥∥Σ − A′∥∥2
F =

p∑
i=1

(σii − a′
ii)2 +

∑
i ̸=j

∣∣∣a′2
ij

∣∣∣
14



. For off diagonal entries a′
ij = 0 when i ̸= j. Only when having a′

ii = σi if i ≤ r and choosing a′
ii = 0

minimizes the above summation term. So Σr is the only matrix that minimizes ∥Σ − A∥F . We have
the low rank approximation M ′ = argmin

M
∥X − M∥2

F = UΣrV T , and the minimized ∥X − M ′∥2
F =∑p

i=r+1 σ2
i .

Singular Value Decomposition
Given a matrix m by n X, we can perform SVD to have the decomposition X = UΣV T , where U

has size m by m, Σ in m by n, and V T in n by n. The columns of V form an orthogonal basis for Rn,
the row space of X. The columns of U , form the orthogonal basis for Rm, the column space of X. Σ
is the diagonal matrix which contains the singular values on the diagonal entries ordered from largest
to smallest in value.

Steps to perform SVD: Step 1, XT X = V Σ2V T . Step 2, Solve for det(XT X − λI) = 0, finding
λ1, · · · . Step 3, for each λi, substitute it into XT X − λiI, to find a vector vi that is orthogonal to the
row space, i.e. the null space of row vectors, then normalize it to be the i-th column of V . For all the
λi we found we take σi =

√
λi on the diagonal of Σ. After V and Σ are found we can also find U .

U represents the left singular vectors, serving as a column orthonormal matrix that captures the
principal directions in the original data space. These eigenvectors form a transformed coordinate
system. Each column of U acts as a basis vector, and are arranged in order of decreasing importance,
corresponding to the magnitude of singular values.

Σ is a diagonal matrix composed of non-negative singular values. These values are sorted in
descending order, serving as a measure of each principal direction’s significance. The diagonal entries
essentially scale the singular vectors, providing a precise representation of how much information or
variance each direction contributes to the overall data. Larger singular values indicate more dominant
patterns, while smaller values suggest less critical variations.

V , consisting of right singular vectors, complements the U matrix by representing the principal
directions in the feature space. Orthonormal in nature, the V matrix’s rows provide a comprehensive
mapping of how the original data can be projected and transformed across different feature dimensions.
Each row captures a specific directional characteristic of the data, offering insights into the underlying
geometric and statistical properties of the original matrix.

Eigen Decomposition
Given a square n×n matrix A, we can perform an eigen decomposition when A is diagonalizable).

This decomposition can be written as

A = V ΛV −1,

where V is an n × n matrix whose columns are the eigenvectors of A, and Λ is an n × n diagonal
matrix containing the corresponding eigenvalues along its diagonal. Λ is diagonal matrix with entries
λ1, λ2, . . . , λn (the eigenvalues of A). These are usually arranged in descending or ascending order,
depending on the application. V is the matrix of eigenvectors. Each column vi is an eigenvector
associated with the eigenvalue λi. When A is diagonalizable, these eigenvectors form a basis for Rn

Steps to perform Eigen Decomposition:

1. Form the characteristic polynomial: Solve

det(A − λI) = 0

to find all eigenvalues λ1, λ2, . . . , λn.

2. Find each eigenvector: For each eigenvalue λi, solve

(A − λiI)vi = 0
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to find its corresponding eigenvector(s) vi. Normalize or scale the vectors appropriately.

3. Construct V and Λ:

V =
[
v1 v2 · · · vn

]
, Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 .

4. Decompose:
A = V ΛV −1.

The diagonal entries of Λ, λi, indicate how A scales the corresponding eigenvector vi. A larger
eigenvalue implies a stronger stretching in the direction of its eigenvector, while an eigenvalue of smaller
magnitude implies less influence in that direction. The columns of V form a set of basis vectors that
diagonalize A. Each column vi is the eigenvector associated with λi. In geometric terms, Avi = λivi,
meaning vi is a direction in which A acts as a simple scaling by λi.
Special Case: Symmetric Matrices

• If A is real and symmetric, it can be orthogonally diagonalized:

A = QΛQT ,

where Q is an orthonormal matrix (QT Q = I). This simplifies the inverse to Q−1 = QT .

• The eigenvectors in this case are orthonormal and can be chosen to be perpendicular to each
other, greatly simplifying many computations in numerical linear algebra.

PCA Steps
Given the original data X0 in p×n with p features and n observations, we can first center the data

by Xik = X0ik − X̄k, where column mean is 0. The centered data X has ∑n
i=1 Xik = 0, ∀k. Finding

the top m principal components is the process of finding the m directions α1, α2, · · · , αm such that
the projected data onto these directions maintain variance the most.

For a direction eT through the mean centered point X̄, the projection of a data point Xi is
eT (Xi − X̄). The projected variance is

1
n

n∑
i=1

[eT (Xi − X̄)((Xi − X̄)e)] = eT Σe

. The first principal component e1 can be found by e1 = argmax
e

eT Σe, s.t. eT e = 1. Using Lagrange

Multiplier we can find λ = eT Σe, where λ1 is the max projection variance, and e1 be the first principal.
Based on the first principal component we can find the second pc as well. Given the first pc e1, e2

can be formulated as e2 = argmax
e2

eT Σe, s.t. eT e = 1, eT
1 e = 0. Also by Langrange Multiplier we can

find Σe2 = λ2e2.

K-Means
In the p−th dimension, the K-Means optimization task is minimize

c1,c2,··· ,cn
f(c1, c2, · · · , cn), where f(c1, c2, · · · , cn)

is defined as
n∑

i=1
∥xi − c∥2

2 =
n∑

i=1

p∑
j=1

(xij − cj)2
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. Take ∂f
∂cj

= −2 ∑n
i=1(xij − cj) = 0, obviously the solution to this is cj = x̄j . Therefore similarly we

can have the result c = (x̄1, x̄2, · · · , x̄n). Since ∂2f
∂c2

j
= 2n > 0, so we have the c as global minimum.

The steps for the K-Means algorithm can be generalized as follows:

1. For a fixed set of {Ck}, find Ck = 1
|Ck|

∑
xi∈Ck

xi.

2. For given centroids {ck}, assign each xi to each cluster and find the one that minimizes ∥xi − ck∥2
2,

where each xi is assigned properly and ∑
xi∈Ck

∥xi − ck∥2
2 is minimized.

3. The term ∑K
k=1

∑
xi∈Ck

∥xi − ck∥2
2 decreases or stays the same after a given iteration. Minimizing

pairwise distance is equivalent to minimizing the distance to the centroid, which proof can be
performed through setting:

Sk =
∑

i,i′∈Ck

∥xi − xi′∥2
2 =

∑
i,i′∈Ck

[∥xi − ck∥2
2 + ∥xi′ − ck∥2

2 − 2(xi − ck)T (xi′ − ck)].
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