# Sparse PCA

The first principal component is Z,=XV,

What if we want to select a subset of if .... fpg important for summarizing the information in X? SCOTLASS by Joliffe et. al. (2003):

maximize  $V^T S V$  subject to  $\frac{1}{|V||_1} = 1$ 

$$| If c \uparrow \infty \Rightarrow PCA. \quad If c \downarrow 0 \Rightarrow V = 0.$$

$$| 1 \leq C \leq \sqrt{P} \quad \text{as} \quad ||V||_{2} \leq ||V||_{1} \leq \sqrt{P} ||V||_{2}$$

$$| If V = (1, 0, ..., 0) \Rightarrow ||V||_{1} = 1. \quad If V = (\frac{1}{\sqrt{P}}, ..., \frac{1}{\sqrt{P}}) \Rightarrow ||V||_{1} = \sqrt{P}$$

Power iteration method

$$\frac{Step 1}{Step 2} \quad \tilde{V} = \frac{\chi^T \chi}{n-1} V \iff At \text{ iteration } t+1:$$

$$V = \frac{\tilde{V}}{\|\tilde{V}\|_2} = \frac{\chi^T \chi V^{(4)}}{\|\chi^T \chi V^{(4)}\|_2}$$

Penalized matrix decomposition by Witten et al (2009):

At iteration t+1:  $V^{(t+1)} = \frac{S_{\lambda}(X^{T}XV)}{\|S_{\lambda}(X^{T}XV)\|_{2}}$ 

where  $S_{\lambda}(a) = \text{Sign}(a)(1a1-\lambda)_{+}$  is Soft-the Sholding operator applied coordinatewise. and  $\lambda$  is such that  $\|V^{(t+1)}\|_{1} = C$ .

$$S_{\lambda}(a) = Sign(a)(|a| - \lambda)_{+}$$

$$a \rightarrow a + \lambda$$
 $a \rightarrow 0$ 
 $a \rightarrow a - \lambda$ 

- · Sn (a) = a for 1 = 0
- $S_A(a/d) = S_{Ad}(a)$

(a>1) Sign (a) = 1, 
$$|a| = a>1 = 3$$
  $S_{A}(a) = 1 \cdot (a-1)$ 

$$(a \pm -1)$$
 Sign  $(a) = -1$ ,  $|a| = -a > 1 = 3$   $S_{\lambda}(a) = -1 \cdot (-a - 1)$   $= a + 1$ 

# Sparse SVD

Penalized matrix decomposition by Witten etal (2009):

Given  $X \in \mathbb{R}^{n \times p}$  find  $d \in \mathbb{R}$ ,  $u \in \mathbb{R}^n$ ,  $v \in \mathbb{R}^p$ minimize  $||X - duv^T||_F$  Subject to  $\int ||u||_2 = 1$  u,d,v  $\int ||u||_1 \leq C$ ,  $\int ||v||_2 = 1$   $||v||_1 \leq C_2$ 

- If C, and C2 are very large then u and v are singular vectors (see HW2)
- Why not just  $||u||_1 = 1$  and  $||v||_1 = 1$ ?

  | Let's denote by (i,j) the index with the largest  $||x_{i,j}||_1$ . Then  $u = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ ;  $v = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ ;  $d = X_{ij}$   $||X = \begin{pmatrix} -x_{ij} \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & x_{ij} & 0 \end{pmatrix} = X_{ij} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ ;  $(0 & 0 & 0 \end{pmatrix}$

- · For fixed u you need to maximize  $U^TXV$  subject to  $\int ||V||_2 = 1$  $\int ||V||_1 \leq C_2$
- · dagrangian is
- $2(V, A, \mu) = u^T x V \lambda(||V||, c_2) \frac{\mu}{2}(V^T V 1)$ • One can show that optimal u and v are:  $V = \frac{S_A(X^Tu)}{M}$  where  $S_A(a)$  is soft-the sholding
- To enforce  $\|V\|_{2} = 1$  we need  $M = \|S_{A}(X^{T}u)\|_{2} \quad So \quad V = \frac{S_{A}(X^{T}u)}{\|S_{A}(X^{T}u)\|_{2}} = V(A)$
- · We need to find I such that  $||V(I)||_1 \leq C_2$

If we don't have additional constraint 1/41/1 = C, we will get sparse PCA.

At iteration Step 1  $U^{(t+1)} = \frac{XV^{(t)}}{\|XV^{(t)}\|_2}$   $(T_{t})^{(t+1)} = \frac{XV^{(t)}}{\|XV^{(t)}\|_2}$ 

• Note that if  $\lambda = 0$  then  $V = \frac{X^T X V^{(t)}}{\|X^T X V^{(t)}\|_2}$  that is, power iteration method. • After finding  $U_1, d_1, v_1$  you can appey method to  $\tilde{X} = X - d_1 u_1 v_1^T$  and find  $U_2, d_2, v_2 \dots$ 

#### Sparse PCA on shapes (from ESL11)





CC annotated with landmarks

black: the mean cc shape

red: PC loading vectors





### Kernel PCA

The main limitation of PCA is cinearity  $\left| Z_{i} = X V_{i} = \begin{pmatrix} 1 & 1 \\ f_{1} & f_{p} \end{pmatrix} \begin{pmatrix} V_{1i} \\ \vdots \\ V_{pi} \end{pmatrix} = f_{1} V_{1i} + ... + f_{p} V_{pi} \quad \text{(linear function of } f_{1} -... + f_{p})$ 



Idea: transform the feature space, each observation  $x_i \in \mathbb{R}^p$  becomes  $\Phi(x_i) \in \mathbb{R}^q$  (typically, 9 > p)

Then PCA for  $\varphi(x_i)...\varphi(x_n)$  is non-linear for  $x_i...x_n$ .

Example: 
$$\mathcal{P}(f_1, f_2) = (f_1, f_2, f_1^2 + f_2^2)$$



https://atiulpin.wordpress.com/2015/04/02/a-tutorial-on-kernel-principal-component-analysis/

Denote by 
$$\Phi = \begin{pmatrix} -P(x_1)^T - \\ -P(x_1)^T - \end{pmatrix} \in \mathbb{R}^{n \times q}$$
 the transformed data and  $K = \Phi \Phi^T \in \mathbb{R}^{n \times n}$  the inner product matrix,

i.e. 
$$K_{ij} = \langle \varphi(x_i), \varphi(x_j) \rangle$$
.

① Assume that  $\varphi$  is centered.

We can compute PCs using K only (not  $\Phi$ )!

• Eigen vectors of  $S_{\Phi} = \frac{1}{N-1} \, \Phi^T \Phi$  live in the row
Space of  $\Phi$ , i.e.  $V = \Phi^T A$  for some  $A \in \mathbb{R}^n$ 

- I should be normalized by the Sqrt of the e. value  $\| \| \| \| \|^2 = \lambda^T \mathcal{P} \mathcal{P}^T \lambda = \lambda^T k \lambda = \lambda' \| \lambda \|^2 = 1 =$
- $|||V||^2 = \lambda^T \mathcal{P} \mathcal{P}^T \lambda = \lambda^T K \lambda = \lambda' ||\lambda||^2 = 1 \Rightarrow ||\lambda|| = \frac{1}{|\lambda|'}$  The PC scores for  $\mathcal{P}$  are just  $K \lambda$
- · To project P(x) onto the PC clirection V we need to know I and  $LP(x_i)$ ,  $P(x_i) > 0$  only.
  - need to know d and  $\angle \varphi(x_i), \varphi(x) > only.$   $|V^T \varphi(x) = d^T P \cdot \varphi(x) = d^T \left( \langle \varphi(x_i), \varphi(x) \rangle \right)$
- ② If P is not centered then replace K by  $\tilde{K} = CKC$  where  $C = I \frac{11}{n}^T$ .
  - $|\hat{\Phi} = \Phi C| so \hat{K} = \hat{\Phi} \hat{\Phi}^T = C \Phi \Phi^T C = C K C$

Kernel PCA --- compute K - Compute the top eigenvalue of K (1') - find the top eigenvector of k(d) and scale  $||d|| = \frac{1}{|A|}$ - find scores Z= Kd. KPCA relies only on K(x,y)=<P(x), P(y)>, that is Called Kernel function. Examples: Quadratic Kernel:  $K(x,y) = (1 + (x,y))^2$  $|K(x,y)| = 1 + x_1^2 y_1^2 + ... + x_p^2 y_p^2 + 2x_1 y_1 + ... + 2x_p y_p = \langle \varphi(x) \rangle, \varphi(y) \rangle$  for  $\varphi(z) = \begin{pmatrix} 1 \\ 2i \\ 2j \\ 2i \\ 2j \end{pmatrix}$ Polynomial Kernel:  $K(x,y) = (1 + \langle x,y \rangle)^d$ Radial Kernel:  $K(x,y) = e^{-8 ||x-y||^2}$ 

## Local dimension reduction methods

+SNE (+-distributed stochastic neighbor embedding)

given points x1 --- xn ERP

- · compute distances  $||x_i x_j||^2$
- · compute probabilities pij of selecting neighbors (i,j)
  (Use baussian distribution)

Given embedding 2,... 2n ER9 (9<P)

- · compute distances 1/2; -2; 112
- · Compute probabilities 9ij of selecting neighbors (i,j)
  (Use t-distribution)

Find 2,... 2n Such that Pij and qij are "Similar" (Use KL divergence)

# Main parameter:

· perplexity, balances local and global attention

### tSNE VS PCA:

+ Non-linear, good for visualization, captures local neighbours

- Slow, Struggles with noise, less interpretable:
  - no meaning of the tSNE coordinates and distances
    - · Small distances are informative
  - · cluster sizes are not informative
  - · distances between clusters are not informative

UMAP (Uniform Mamifold Approximation and Projection)

Given points  $x_1 - x_n \in \mathbb{R}^P$ Constructs a weighted k-neighbour graph

(USE "fuzzy Simplicial complex")

given embedding  $z_1...z_n \in \mathbb{R}^q$  (q < p)

Constructs a weighted k-neighbour graph

(USE "fuzzy Simplicial complex")

Find 2,... 2n such that the graphs are "similar" (use cross-entropy)

#### Two main parameters:

- · h-neighbors, the number of nearest neighbours
- · min-dist, how tightly UMAP packs neighbours Comparing to tSNE, UMAP is faster and better at preserving more global structure



## Practical aspects:

rameters.

Sometimes it's better to Combine PCA & tSNE/UMAP.

- · Filter the data
- . Do PCA, reduce dimensionality and noise
- · Plot with UMAP/tSNE, try various hyperpa-

### Perturbation theory for PCA

Given  $S \in \mathbb{R}^{p \times p}$ , consider  $\hat{S} = S + E \in \mathbb{R}^{p \times p}$  where  $E \in \mathbb{R}^{p \times p}$  is a symmetric noise matrix.

Denote the eigendecompositions by  $S = UAU^T$ ,  $\hat{S} = \hat{U} \hat{\Lambda} \hat{U}^T$ . Recall the definition of the Spectral norm:  $||AU|_2 = \sqrt{\lambda_1(A^TA)} = d_1(A)$ .

Thm (Weyl's)  $\max_{i=1...p} |A_i - \hat{A}_i| = \|\Lambda - \hat{\Lambda}\|_2 \le \|E\|_2$ , i.e. eigenvalues are stable under perturbation.

$$\hat{J}_{i,v} = \max_{\|v\|=1} v^{T} \hat{S} v = \max_{\|v\|=1} (v^{T} \hat{S} v + v^{T} \hat{E} v) \leq 2$$

$$\leq \lambda_{i,v} + \max_{\|v\|=1} |v^{T} \hat{E} v| = \lambda_{i,v} + \|\hat{E}\|_{2}$$

Eigenvectors are not stuble!

Example: 
$$S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and  $E = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix}$ ,  $\hat{S} = \begin{pmatrix} 1 & \varepsilon \\ \varepsilon & 1 \end{pmatrix}$ 

$$| U_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } d_1 = 1; \quad U_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ and } d_2 = 1$$

 $\hat{\mathcal{U}}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  and  $A_1 = 1 + \varepsilon$ ;  $\hat{\mathcal{U}}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$  and  $A_2 = 1 - \varepsilon$ 

Measuring agreement between  $\mathcal{U}$  and  $\mathcal{U}$  is tricky. Ple call  $\mathcal{U}_{(r)} = (\dot{u}_1 \dots \dot{u}_r) \in \mathbb{R}^{p \times r}$  and  $\hat{\mathcal{U}}_{(r)} = (\dot{\hat{u}}_1 \dots \dot{\hat{u}}_r) \in \mathbb{R}^{p \times r}$ 

- · Why not  $||U_{in}-U_{in}||_F$ ?

  | If  $\lambda_1 = ... = \lambda_F$  then U is any orthogonal matrix.
- We need to measure the agreement between  $U = span(u_1,...,u_r)$  and  $\hat{U} = span(\hat{u_1},...,\hat{u_r})$

## Principal angles between subspaces

Consider A, B ER " such that ATA = BTB = I.

Denote of = Span (a,,.,ar) B = Span (B,,.., Br)

Then principal angle Between A and B is

 $\theta_1 = \angle(A, B) = \arccos(d, (A^TB))$ 

 $2(A,B) = \min_{\substack{a \in A \text{ Belb} \\ ||a|| = ||b|| = 1}} \arctan_{\substack{a \in A \text{ Belb} \\ ||x|| = ||y|| = 1}} \arctan_{\substack{a \in A \text{ Belb} \\ ||x|| = ||y|| = 1}} \alpha_{\substack{a \in A \text{ Belb} \\ ||x|| = ||y|| = 1}}$ 

The general Statement is  $A^TB = U \cos \theta V^T$  where  $\cos \theta = \begin{pmatrix} \cos \theta_1 \\ \cos \theta_r \end{pmatrix}$  and  $\theta_1 \dots \theta_r$  are called principal angles.

#### Distance between Subspaces

Define the distance between A and B as  $d(A,B) = \| \sin B \|_{F}$ 

Zet  $P_A = AA^T$ ,  $P_B = BB^T$  denote the projection operators and  $A_\perp$  and  $B_\perp$  are orthogonal complements.

Then 
$$d(\mathcal{S}_{1},\mathcal{B}) = \frac{1}{12} \|P_{A} - P_{B}\|_{F} = \|A^{T}B_{L}\|_{F}.$$

$$I = A^{T}A = A^{T}(BB^{T} + B_{L}B_{L}^{T}) A = \mathcal{U} \cos^{2}\theta \mathcal{U}^{T} + A^{T}B_{L}B_{L}^{T}A$$

 $A^TB_{\perp}B_{\perp}^TA = I - U\cos^2\theta U^T = U(I - \cos^2\theta)U^T = U\sin^2\theta U^T$ 

$$tr(U \sin^2 \theta U^T) = tr(\sin^2 \theta) = || \sin \theta ||_F^2 = tr(A^T B_{\perp} B_{\perp}^T A) = || A^T B_{\perp} ||_F^2$$
  
 $|| P_A - P_B ||_F^2 = || AA^T - BB^T ||_F^2 = tr(AA^T AA^T) - 2 tr(AA^T BB^T) + tr(BB^T BB^T)$   
 $= r - 2 tr(A^T BB^T A) + r = 2r - 2 tr(I - A^T B_{\perp} B_{\perp}^T A) = 2 tr(A^T B_{\perp} B_{\perp}^T A)$ 

Davis-kahan theory

Denote by  $\delta$  the eigengap, i.e.  $\delta = \min_{1 \le i \le r, s+1 \le j \le p} |A_i(S) - A_j(\tilde{S})| > 0$ Then  $d(U_{cr}, \hat{U}_{cr}) \le \frac{||E||_F}{c}$ 

$$(u_{\alpha}, \hat{u}_{\alpha}) \leq \frac{||E||_F}{c}$$