
Sparse PCA

The first principal component is z =XV,

V11

-

z = H .... Vz- V, f , + V , fz +... + Vpy , fp +
+ Up , fp

:

Vap

X VI

What if we want to select a subset ofIf ... fpY

important for summarizing the information in X ?

SCoTLASS by Joliffe et. al. (2003) :

maximize VTSV subject to I 11 v112 = 1

II VII, C

If < + & => PCA. If cdo = v = 0.

121 as 11VI2lIV11,
1 PI/VII2

If v = (1, 0
..., %) =) 11 VI 1

= 1
. If v =( ...,) => IIVII = P



Power iteration method

&
Step 1 = x W At iteration ++1 :

n -1 EX

Step2 v= v(t+1)= (xXv(t)
11XTXV(+112

Penalized matrix decomposition by Witten etal (2009) :

At iteration ++1 : v(t+ 1) =

12

where Sj(a) = sign (a) (19)-x)
+
is

soft-the sholding operator applied coordinatewise.
and X is such that 11 UH/l

,
= C.



S) (a) = Sign (a) ((a) -x)+

a+ a +b) Note that

-
A

E sign(a) = 1
,
(a) = 2x = Sy(a) = 1 . (a -5)a) J

#a (a)() => (a) -J <0 = Sj(a) = 0

⑤ Sign (a) = - 1
,
(a) = - a b => Sy(a) = 1 . )-a- b)a

= G + d



Sparse SVD
-

Penalized matrix decomposition by Witten etal (2009) :

given XIRNXP find deIR,
neIR"

,
VERP

minimize II X-durFlle subject to llull= 1
u

,d,
v S114111 = 2,

Il VI12 = 1

11 Vll1 [C2

· If C, and C are very large then hand!

are singular rectors (see Hwa)
· Why not just Kully = 1 and 1/VI1 = 1 ?

Let's denote by (, j) the index With the

I largest /xis) .

Then u =(%: v= (f d= Xij

I* (x)= 0

.



· For fixeda you need to

11V112 = 1maximize uTXV subject to (IV1
-
22W

· Lagrangian is
2 (v

,
6

,M) = uTXv - x(IV), - (2) = E(VTV - 1)
· One can show that optimal handr are :

v = SIXn) where S
, (a) is soft- thesholding

M

· To enforce 11 VII = 1 we need
2

,
d
(x+u)

= V(x)/M = 11S , (XTullz So v =

xtu)12

· We need to find a such that IIVIII11(
2



· If we don't have additional constraint

IIUll, -C,
we will get sparse PCA.

At iteration Step1 u= /lat+ 1 :

Step2 v** (XTu( +H)
=l-1/Sj (X c++1) /12

1 S(xTXv/ 11 X V112) = S5(X+Xv) for d = 5 . /Xv1I2

· Note that ifa = 0 then All
that is

, power iteration method.

· After finding U, d, v
, you can apply method

to Y = X-d
, u

, r
,

T and find U2
,
da

, ...



Sparse PCA on shapes (from ESLII)

corpus callosum() (3)-y....->

-S
- n = 569 elderlyx= (- ( people-

-

CC annotated with landmarks

black : the mean cashape

red : PC loading rectors



KernelPCA

The main limitation of PCA is linearity.

It = X vi = (f ...h) () = finit ..
+ fprpi (linear function

of f.. -. fp)

↑ 1

-.::
:..
:

A ..
I p " I

-: -

↑
3 : S ↑ >

S - &

↑

.
↑ ... .....↑

-

#dea : transform the feature space ,
each observation

xitIR" becomes ↑(xi)(IR9 (typically, 97p)
Then PLA for P() ... &(c) is non-linear for es.... n .



https://atiulpin.wordpress.com/2015/04/02/a-tutorial-on-kernel-principal-component-analysis/

Example : P(f1 , fz) = (fi , fc ,
fi+ fi)

D
⑭ #

f,+f

2
f =>



Denote by P= -PER the transformedatheS I
and k = PPTER

**

the inner product matrix,

i. e . Kij = <q(xi)
,
↑()) .

① Assume thatI is centered.

we can compute PCs using K only (no+ 4) !

· Eigenvectors of Sp =-PTP live in the row-
N- 1

space of I
,
i . e. V = PtC for some de IR"

1Sav = 1qT(V)= ju
N- 1

⑳ ↓ is an eigenvector of K.

&=Ium
↓



· I should be normalized by the sprtof the e. value

1 ll v ll
2

= 2
+PPTL = a

Tk =J' 11(11 = 1 =) 11/1 =↑
· The PC scores for I are just KI

12 = qv = 992 = k)
.

· To project ↑(2) onto the PC direction V We

need to know 2 and (P(x) , ↑(2) > only

(VTp() = 2TP· p() = 2T (
<↑() ,9(a)S

<q(xn) , 10(2c

② IfI is not centered then replace K

byk = CkC where c = I-

1 & = ↑C so E =G= 190TC = CkC



Kernel PCA

-> compute K

-> compute the top eigenvalue ofK (5)

-> find the top eigenvector of k (c) and scale 111
-> find scores z= KL

.

KPCA relies only on Ky) =<P()
, P(y1),

that is

called Kernel function.

Examples :

Quadratic Kernel : k(x
,y) = (1+ (x,y))

2

221k(x
,y) = 1+ x

, y,+ ... + xyp2+ 2x
, y,+.. +2xpyp = (P(x)

, p(yk for P(x)=
Polynomial Kernel : K(x

,y) = It y
Radial Kernel : k(x

, y) = e



Local dimension reduction methods

tSNE (t-distributed stochastic neighbor embedding)

G iven points (, ...
xn EIRP

· compute distances 11 x2: - x; /12

· compute probabilities Pij of Selecting neighbors (i,j)

luse Gaussian distribution)

Given embedding 2
, ... 2n EIR9 19 = p)

· compute distances Il 2i - 2j/12
· compute probabilities gij of selecting neighbors (i,j)

luset-distribution)

Find Z
.... In such that Pij and gij are "Similar"

luse KL divergence(



Main parameter "

· perplexity, balances local and global attention

ISNEvs PCA :

+ Non-linear
, good for visualization ,

captures

local neighbours
- Slow

, struggles with noise
,
less interpretable :

· no meaning of the tSNE coordinates and distances

· small distances are informative

· cluster sizes are not informative

· distances between clusters are not informative



UMAP /Uniform Manifold Approximation and Projection)

G iven points (, ...
xn EIRP

· constructs a weighted K-neighbour graph

luse "fuzzy simplicial complex"

given embedding 2
, ... In t R9 19 = p)

· constructs a weighted K-neighbour graph

luse "fuzzy simplicial complex"

Find Z
.... In such that the graphs are "similar"

1 use cross-entropy
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Two main parameters :
-

· n
_ neighbors

S
themember of nearest neighbours

· min-dist
,

how tightly UMAP packs neighbours

Comparing to tSNE, UMAP is faster and
better at preserving more global structure



Practical aspects :

Sometimes it's better to Combine PCA & SNE/UMAP.

· Filter the data

· Do PCA
,
reduce dimensionality andNoise

· Plot with UMAP/tSNE
, try various hyperpa-

rameters.



Perturbation theory for PCA

Given SEIRPP ,
Consider 5 = S +E@I *** Where

E ERPP is a symmetric noise matrix.
- - 1

T
1 11Denote the eigendecompositions by S = UNUT, 5 = unU &

Recall the definition of the spectralhorm :

llAll2 = PATAT = d
,
(A).

Imm (Weyl's max (di-5il = 11a-Alle = lIE112 i
. C.

i= 1 .. P &

eigenvalues are stable under perturbation.
1

T
J

,

- max rT .
Sv = max (v +Sv + vEv)[- L

11 VI1 = 1 11v11 = 1

[ 6
,

+ maxIVTErl = J
,

+ 1E112
-

(IVll = 1

151-5/-lEll2



Eigenvectors are not stable !

Example : S = (i) and E = (8), j = (i)
u, = (b) and d .

= 1 ; uz = (1) and J2 = 1

I u= E(l) and =He ; z=* (_1) and dz = 1 - E

Measuring agreement between U and Y is tricky.

Recall U(r) = (4 ... ur) @R** and Ecr = (in ... ur) ERPX
· Why not 114-Unle ?(r)

1 If d =
...

= dp then H is any orthogonal matrix.

· We need to measure the agreement between

I = Span (n... ,r) and = Span (h, . . . ,ur)



Pincipalangles between subspaces

Consider A, B E
**
such that ATA = BTB = I.

Denote A : Span(a, ,.., an) B = Span 16, . . .,
fr)

Then principal angee between A andB is

0. = <(A
, B) = arcos (d, (ATB)

< (A, B) = min arcos (atb) = min arcos(TABy) Leta A bel x
, Y

1)all= 11611 = 1 11x(y)= 11 yll = 1

The general statement is

ATB = U cost VT where cost= (cost!cost)
and F, ... Or are called principal angees.



Distance between subspaces

Define the distance between A and B as

d(1, B) = Il Sin AllE

Let Pa = AAT
,
PB = BBT denote the projection operators

and An and By are orthogonal complements.

Then d/b,B) = IIPA-Pily = llATBF -

I = ATA = AT (BBT+ B+ BI) A = U cosQUT+ ABBIA
ABBIA = I-UCOUT= U(I-coro)uT= USinOUT

2

to /Usin UT) = tr (sino) = 11 Sin OllE = tr (ATB
_ BIA) = llATBllE

1) PA-PBIE= llAAT-BBTllE = InCAATAAT)-2tr/AATBBT) + Er (BBTBBT)

1
= r - 2 tr(A

+BBTA) + r = 2r - 2 tr(I - AB+ BIA) = 2 +r/ATB+ BIA)



Davis-Kahan theory
Denote by 8 the eigengap ,

i
. e.

S = min(di/s)-Jj(5)1 > o
1[i=r,+11jzp

Then d (4
,
Ein) 1 HF

S


