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Classification task

Given feature matrix X and response y

X =F and y =( EIR"
where yithl, ...,

kn gives class of i th observation.

Denote by CRE41...
kY the subset of Observations

that belong to class & and ne = Kal .
~decision
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Data (i ,Yil, h : (c- 41 .... k}

Examples: decision rule

· predict if a patient is sick
, y: -Lsick , healthy's

· predict image class Y: th cat
, dog,

bird3

· predict movie genie Y:th comedy, thriller, drama



Linear discriminant analysis

Denote by 2 a random variable giving the class lasel.
withprobability it -

priors2 h
with probability Tr

We want toSuied Bayes classifier

2(x) =

argmax P(z =r(X=x)
R= 1... K

Equivalently, h(xl = argaP(X=x2 = R) i

P(z = r)X =x) x =x)z = k)πa
AI P(x=x(2 =) +j = common

h(x) = argmax P(X=x (2 = R) : TR
R= 1... K



Recall normal density :

f(x;m ,
2) =()*pe

- * (x-M)2 (x -M)

Limar discriminant analysis (LDA) assumes

X= x/z = R ~Np(Mrs E same variance
· The decision rule is h(x) = argmax la +G

h(x) = argmax(logf(x;ja ,
2) + log ir) =

R2 1 ... K

log FTEM-EC-Mrl<(x -Mm) + log [Tr)=

argman (
- T

= argmax-l-2M
*

x +My + log)

= argma (ar + b*x)-linear functions of e

I With ar = logtr-IME"Mr and Gr =M2-



· The decision boundaries are linear.

class 1

Lets take two classes R
,
d

,
it 2 if (ar + 6x) < (ad + 65,x) I

R /

class3

Thus
, ar-ar + (br-batte > o Gar

1 it's a half-space
· In practice,

we don't know To
, Mr ,

I
,
so

we need to estimate them.

1

I Tr = AR Mr = Fr & x;
N itCR
K

·

- T

[ =
1 [ [(xi -Mr)(x: -↑2)= Si
n

R =1 iCCR

I Where Sp = -Mr) (x-M- sample covariance for a



· If I is not common for groups, we apply

quadratic discriminat analysis (QDA)
h(x) = argmax)-Eloglr-E-mE(x-Mn)+ log
- Elog1[r1 -E(x-r)[o"(x-Mr)+ logiTn =

- Elog1[r) - E(x-Mal Zei(2-Mail+ log TTR
-↳D-[i) + (MS-MisZil(MEMe-Ms. SiMm)O

Q -

T

PT
+ logTa-logTri = 2TQx + PTx + R - quadratic function-

R

Estimates for Ir = Sk = En
EEx -Mr) (2:

-Mr

LDA Q AE class, E
/

class3

Gar explas

case



Geometry Of LDA

N(M,,

⑭ Is the decision boundary the

same as Voronoi tesselation ?

N⑭ h(x) = arguin 11x-MrIPO R = 1... K

N(Mc ,
5)

h(x) = argmin (2(-Mr)["(x-Mm) - logtr) =

R =1... K

= argu ) p-Mm)T[ *
((x -Ma - logπr) =

= argi(Ill[ (-Ma)(l - logi+r) =

=

arguin(I
*-M-logT

Where x* andMr are points in the transformed space



·The transformation x*-
*

x is sphering,
i

. e. Cor(x *) = I.

1 cor12-
*

2x) =[
+1[[ 1 2

= I

· Therefore
,
LDA classifies the points in the

transformed space according to
2

h(x*) = argin (E
*-M-logT
- nam

nearest adjustment bycentroid the class size.

4
* lie in a plane M of dimension -k-

1.· M.... /k
& plane is

M.. 2-dim

I mid ina M y*



· Denote by P the projection operator ontoM

this low-dimensional plane.

Find basis & With QR foro
0

14* (R2-M, *, . .

., M*-MY) . Then Pm = &&gu*

· For the projected points C = Pr* the value

2(x) is the same as h(x*).

1I >*-MPMPM
A/

Mi O ~

#= 11 -M*11 + 11PM+ (c*) 112 /A
2 · *gu* 3

h(x*) = argmin(I*-M-logT
= argmin)-M+EPM)-logT
= argi (El-MIP-logTa) = h()



LDA procedure :
1

1. Compute Fr
, Mr ,
E.

2. Sphere the data and transform centroids
y

project sphered data Onto the plans M

containing the sphered centroids.
This can be combined in a single linear

transformation
-

xi = Ax
; Mi = AMi

3.Given a new point 2 ERP transform it
to 2 = Ax

,
then classify to the nearest

-

centroid Mi adjusting for class proportions.S



· Decision boundaries in the M space are also

linear
.

h(x) = arg) El-Mell-logTa
= argmax logTR 2I ( - EIIJrII) =argmanR=1... n-

-

Ar Ok

Example : If k=3
,
M is two-dimensional.

M
~↳ ↑

x2 es Ez ②dimp-dim -
-

-

↑
XM, ↑

A ·
A EIR2

* P X M,

-

X,
x3 -

-
·es CI *

Ma
.

-
LD2

!

->- - ↑

↑m x Yes.X - ~

- M2 ↑

↑

LB ,



&Reduced-ranDA (Fisher)
For K > 3 we can find an L-dimensional

subspace of M to project onto (1 < K- 1)
Choose the subspace that spread out

the projected centroids (like in PCA !)
· S = 1 E(xi - )(xi - )T =

U k = 1itCk-
total covariance

=-Em)(x(-)-
--
w-within-class B - between-class

W=r .Strif common covariaa

I B=-
T

Tr (Mr -M) (Ma-M)
T

xk &
k = 1

With covariance & mean of centroidsM= TRMR-
weighted by To



· Suppose we want to project data onto direc-

tion v
,
then the variance of projections is

T
W Su = vTWr + vTBu

K

viWv= v = E Tr . Variance of projection in CR)
R=1

vTBv- variance of projectins of centroids
-

(weighted by TR)

M M

) + -

·

"
vTSV

W ↓ ↓
⑳

Scr

W



We want large viBr andsmall wr

Large vTBr and VTWv Small viBr and viwv

Fisher's proposition :

maximize -BVERP
&

I
Rayleigh quotient



· The solution v is the largest eigenvectorofW"B.

Let v =
whr then v =W-v and Fisher's problem

-
- 1/2

maximize vTIW BW-"2)
-

-VEIRP 11 1/2

Equivalently, if B = W
*
BW
-*

we solve

I maximize TB 2ubject to 1111 = 1
-

VEIRP

-

Now v is the largest e. rector of B =) B = J,
/

S/W-" BW-* Y = W-
" BW-"w1 v = w

= "2
Br = J

,
W

-"
-

1 Then ,
w"Br = d

,
2.



· If we assumed common covariance for classes

(W = 2)
,
then B = , (M-M)(M-M)

with Mr = AMR Where A is sphering +projection

Operator from LDA.

[Mr =M = Mr = AMR

B = [
-
BE

-1 => [(Mr-M)(Me-M) =

--

= (F-M)(M-M

· Thus is the top eigenvector of B and is
-

the first PC direction of ... Mr (Where
observations in PCA are weighted by it, . . . .

n)



Summary (LDA+dimension reduction

·Compute centroids M, , ...,Mr

· Compute within class covariance W

· Transform cuttroids Mr = wilMr
·Compute between class Covariance B

· Denote by V, E2
, ..... the eigenvectors of B

· Project data onto V, ...
Ve with v = w

- "
2 Ve

C

↑
LD directions


