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Please turn on your videos :)

Figure 1: [picture source]

https://mobile.twitter.com/rpcrowe/status/1586472718291148813


Announcements

1. Submit your regrade requests on Crowdmark by Thursday.
2. Midterm 2 is in two weeks! Same logistics (the review session

will be held online this time).



Agenda for today

▶ Recap: normal distribution, sample mean distribution and CLT
▶ More about CLT
▶ Confidence intervals



Recap: expectation and variance
Expectation

▶ If X is a random variable and a is a number then

E (a · X ) = a · E (X )

▶ If Y is also a random variable then

E (X + Y ) = E (X ) + E (Y )

Variance

▶ If X is a random variable and a is a number then

Var(a · X ) = a2 · Var(X )

▶ If Y is also a random variable and it is independent of X then

Var(X + Y ) = Var(X ) + Var(Y )



Recap: expectation and variance

If X1, . . . , Xn are independent random variables with E (Xi) = µ
and Var(Xi) = σ2 and X̄ = X1+...+Xn

n is the average of these
random variables then

E (X̄ ) = µ and Var(X̄ ) = σ2

n



Recap: density curves
We use density curves to describe the distribution of continuous
random variables:

▶ The total area under the density curve is always 1
▶ The area under the curve bounded by a and b vertical lines is

equal to P(a ≤ X ≤ b)
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Recap: normal distribution

Normal random variable X ∼ Normal(µ, σ2) has symmetric,
bell-shaped and unimodal distribution.

▶ µ = E (X ) controls the “center” of the distribution
▶ σ2 = Var(X ) controls the “spread” of the distribution
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Recap: normal distribution
Standard normal distribution has µ = 0 and σ2 = 1.

▶ To find the probabilities P(a ≤ X ≤ b) for standard normal
we use the distribution table

P(−1 ≤ X ≤ 1.25) =
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Recap: normal distribution

▶ If X ∼ Normal(µ, σ2) we use standardization. The
transformed variable Y = X−µ

σ has standard normal
distribution.

For example, if X ∼ Normal(1, 100)

P(−6 ≤ X ≤ 6) =



Recap: sample mean ditributoin
We want to study the population parameter µ, e.g. the average
life expectancy in Canada.
We take a sample of n people and compute the average age of
death for them.
Black dots: sample x1, . . . , xn

Red dot: sample mean x̄ = x1+...+xn
n
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Recap: sample mean ditributoin
If your sample size is small (e.g. n = 3), then x̄ can significantly
vary from sample to sample.
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Recap: sample mean ditributoin
If your sample size is large (e.g. n = 100), then the variation in x̄ is
less considerable.
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Recap: sample mean ditributoin

Can we characterize the behavior of x̄?
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Recap: alternative view
▶ We have n random variables X1, . . . , Xn
▶ We assume that they have the same distribution with

E (Xi) = µ and Var(Xi) = σ2

▶ We consider X̄ = X1+...+Xn
n , it is a random variable

▶ Each sample mean x̄ is a realization of X̄

What is the probability density of X̄?
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Recap: central limit theorem
Central limit theorem: for n large enough

X̄ approximately ∼ Normal
(

µ,
σ2

n

)

▶ For different samples x̄ will “jump around” µ
▶ The larger the sample size the closer x̄ to µ
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Central limit theorem: more examples

CLT applies to almost all types of probability distributions.

Example: the probability to win a lottery ticket is p. Suppose we
buy n tickets and compute the proportion of winning tickets.

▶ X1, . . . , Xn ∼ Bernoulli(p) is the outcome for each ticket
▶ Y = X1 + . . . + Xn ∼ Binomial(n, p) is the total number of

winning tickets
▶ X̄ = Y

n is the proportion of winning tickets

What is the distribution for the proportion of winning tickets?



Exercise

The probability to win in a lottery p. Suppose we buy n tickets.

E (X̄ ) =

Var(X̄ ) =



Central limit theorem: more examples

Example: n = 5 and p = 0.1. Note that X̄ has discrete
distribution.
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Central limit theorem: more examples

Example: n = 10 and p = 0.1. Note that X̄ has discrete
distribution.
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Central limit theorem: more examples
Example: n = 100 and p = 0.1. Note that if n is large enough

▶ For different samples the proportion of winning tickets will
“jump around” p

▶ The larger the sample size the closer the proportion of
winning tickets to p
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Confidence intervals
We want to study the average life expectancy in Canada.

We take a sample of 25 people and record their ages of death

ages

## [1] 74.7 82.8 72.6 97.0 84.3 72.8

We compute the sample mean for these 25 people

mean(ages)

## [1] 82.7

We claim that it is an estimate of the average life expectancy in
Canada. How confident are we in our estimate?



Confidence intervals
CLT:

X̄ approximately ∼ Normal
(

µ,
σ2

n

)

Standardization:
X̄ − µ

σ/
√

n approximately ∼ Normal (0, 1)

Distribution table:

P
(

−1.96 ≤ X̄ − µ

σ/
√

n ≤ 1.96
)

= 0.95

Interval for µ:

P
(

X̄ − 1.96 · σ√
n ≤ µ ≤ X̄ + 1.96 · σ√

n

)
= 0.95



Confidence intervals (known σ)

95% confidence interval for µ:[
x̄ − 1.96 · σ√

n , x̄ + 1.96 · σ√
n

]



Exercise

How to find 90% confidence interval? How to find 80% confidence
interval?



Confidence intervals (unknown σ)

95% confidence interval for µ:[
x̄ − 1.96 · s√

n , x̄ + 1.96 · s√
n

]
?

sd(ages)

## [1] 9.5



Alternative view

▶ We have n random variables X1, . . . , Xn
▶ X̄ = 1

n
∑n

i=1 Xi is a random variable
▶ Each sample mean x̄ is a realization of X̄
▶ S2 = 1

n−1
∑n

i=1 (Xi − X̄ )2 is a random variable
▶ Each sample variance s2 is a realization of S2



Confidence intervals (unknown σ)

Standardization:

X̄ − µ

S/
√

n approximately ∼ tn−1

▶ “t distribution with n − 1 degrees of freedom”
▶ It is similar to normal, but not quite. . .



Confidence intervals (unknown σ)
Normal: a = 1.96

t with df = 3: a = 3.18

t with df = 10: a = 2.23

t with df = 50: a = 2.01
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Confidence intervals (unknown σ)

95% confidence interval for µ:[
x̄ − a · s√

n , x̄ + a · s√
n

]

Where a is found from the distribution table.



Exercise

How to find 90% confidence interval? How to find 80% confidence
interval?



Confidence intervals: more examples
We want to estimate the probability to win in the lottery.

We take a sample of 50 tickets and record the outcomes (1 - win,
0 - lose)

tickets

## [1] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

We compute the sample mean for these 50 outcomes
(i.e. proportion of winning tickets)

mean(tickets)

## [1] 0.08

We claim that it is an estimate of the probability to win the
lottery. How confident are we in our estimate?



Confidence intervals: more examples

CLT:
X̄ approximately ∼ Normal

(
p,

p(1 − p)
n

)
95% confidence interval for p (known σ):[

x̄ − 1.96 · σ√
n , x̄ + 1.96 · σ√

n

]

95% confidence interval for p (unknown σ):x̄ − 1.96 ·

√
x̄(1 − x̄)

n , x̄ + 1.96 ·

√
x̄(1 − x̄)

n





Exercise

How to find 90% confidence interval? How to find 80% confidence
interval?



TO DO

1. Module 6. Confidence Intervals Part 1 and Module 7.
Confidence Intervals Part 2

2. Quiz 7 due Monday (March 6) @ 11:59 PM (EST)
3. Practice Problem Set 7

https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-1/
https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-2/
https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-2/

