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Announcements

1. Submit your regrade requests on Crowdmark by Thursday.

2. Midterm 2 is in two weeks! Same logistics (the review session
will be held online this time).



Agenda for today

» Recap: normal distribution, sample mean distribution and CLT
» More about CLT
» Confidence intervals



Recap: expectation and variance

Expectation

> If X is a random variable and a is a number then
E(a-X)=a-E(X)
> If Y is also a random variable then
E(X+Y)=EX)+E(Y)
Variance
» If X is a random variable and a is a number then
Var(a- X) = a* - Var(X)
» If Y is also a random variable and it is independent of X then

Var(X + Y) = Var(X) + Var(Y)



Recap: expectation and variance

If X1,..., X, are independent random variables with E(X;) = 1
and Var(X;) =02 and X = M is the average of these
random variables then

— — 0'2
E(X) = p and Var(X) = -



Recap: density curves

We use density curves to describe the distribution of continuous
random variables:

» The total area under the density curve is always 1

» The area under the curve bounded by a and b vertical lines is
equal to P(a < X < b)
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Recap: normal distribution

Normal random variable X ~ Normal(p, 0?) has symmetric,
bell-shaped and unimodal distribution.

» 1 = E(X) controls the “center” of the distribution
» o2 = Var(X) controls the “spread” of the distribution
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Recap: normal distribution

Standard normal distribution has ;1 = 0 and o2 = 1.

» To find the probabilities P(a < X < b) for standard normal
we use the distribution table
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Recap: normal distribution

» If X ~ Normal(u,o?) we use standardization. The
transformed variable Y = % has standard normal
distribution.

For example, if X ~ Normal(1,100)
P(—6< X <6)=



Recap: sample mean ditributoin

We want to study the population parameter u, e.g. the average
life expectancy in Canada.

We take a sample of n people and compute the average age of
death for them.

Black dots: sample x1,...,x,

Red dot: sample mean x = Lﬂ‘”"
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Recap: sample mean ditributoin
If your sample size is small (e.g. n = 3), then X can significantly
vary from sample to sample.
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Recap: sample mean ditributoin
If your sample size is large (e.g. n = 100), then the variation in X is
less considerable.
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Recap: sample mean ditributoin

Can we characterize the behavior of x?
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Recap: alternative view

» We have n random variables Xi,..., X,

> We assume that they have the same distribution with
E(X;) = p and Var(X;) = o2

» We consider X = w it is a random variable

» Each sample mean X is a realization of X

What is the probability density of X ?
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Recap: central limit theorem
Central limit theorem: for n large enough

_ 2
X approximately ~ Normal (,u, c >
n

» For different samples X will “jump around” p
» The larger the sample size the closer X to u
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Central limit theorem: more examples

CLT applies to almost all types of probability distributions.

Example: the probability to win a lottery ticket is p. Suppose we
buy n tickets and compute the proportion of winning tickets.

» Xi,..., X, ~ Bernoulli(p) is the outcome for each ticket
» Y =X;+...4+ X, ~ Binomial(n, p) is the total number of
winning tickets

> X = X is the proportion of winning tickets

What is the distribution for the proportion of winning tickets?



Exercise

The probability to win in a lottery p. Suppose we buy n tickets.
E(X) =

Var(X) =



Central limit theorem: more examples

Example: n =5 and p = 0.1. Note that X has discrete
distribution.
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Central limit theorem: more examples

Example: n =10 and p = 0.1. Note that X has discrete
distribution.
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Central limit theorem: more examples
Example: n =100 and p = 0.1. Note that if n is large enough
» For different samples the proportion of winning tickets will

“jump around” p

» The larger the sample size the closer the proportion of
winning tickets to p
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Confidence intervals

We want to study the average life expectancy in Canada.

We take a sample of 25 people and record their ages of death
ages

## [1] 74.7 82.8 72.6 97.0 84.3 72.8

We compute the sample mean for these 25 people
mean(ages)

## [1] 82.7

We claim that it is an estimate of the average life expectancy in
Canada. How confident are we in our estimate?



Confidence intervals
CLT:

2
X approximately ~ Normal (,u, U)
n

Standardization:

X —
approximately ~ Normal (0,1
o (0,1)
Distribution table:
X _
P<—196§ “§196>_095
o/\/n

Interval for p:



Confidence intervals (known o)

95% confidence interval for y:

[x—196 ﬁx+196 ﬁ]



Exercise

How to find 90% confidence interval? How to find 80% confidence
interval?



Confidence intervals (unknown o)
95% confidence interval for y:

{X'—-l 96 - V/E ,X+1.96- \/n]

sd(ages)

## [1] 9.5



Alternative view

» We have n random variables Xi,..., X,

> X =137 X;is a random variable

» Each sample mean X is a realization of X

> §2=_L. 37, (X; — X)? is a random variable

2

» Each sample variance s? is a realization of S



Confidence intervals (unknown o)

Standardization:
X —p .
approximately ~ t,_1

S/vn

» “t distribution with n — 1 degrees of freedom’

» It is similar to normal, but not quite. ..



Confidence intervals (unknown o)

Normal: a = 1.96
t with df = 3: a = 3.18
t with df = 10: a =2.23
t with df = 50: a = 2.01
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Confidence intervals (unknown o)

95% confidence interval for y:

[)?—a-\;,>?+a-\%]

Where a is found from the distribution table.



Exercise

How to find 90% confidence interval? How to find 80% confidence
interval?



Confidence intervals: more examples
We want to estimate the probability to win in the lottery.

We take a sample of 50 tickets and record the outcomes (1 - win,
0 - lose)

tickets
## [1] 0001 0010000000000100

We compute the sample mean for these 50 outcomes
(i.e. proportion of winning tickets)

mean (tickets)
## [1] 0.08

We claim that it is an estimate of the probability to win the
lottery. How confident are we in our estimate?



Confidence intervals: more examples

CLT: p(1p)>

X approximately ~ Normal (p,
n

95% confidence interval for p (known o):

[x—196 ﬁx+196 ﬁ]

95% confidence interval for p (unknown o):

[2—1.96- X(ln_x),x+1.96~ X(ln_x)



Exercise

How to find 90% confidence interval? How to find 80% confidence
interval?



TO DO

1. Module 6. Confidence Intervals Part 1 and Module 7.
Confidence Intervals Part 2

2. Quiz 7 due Monday (March 6) @ 11:59 PM (EST)
3. Practice Problem Set 7


https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-1/
https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-2/
https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-2/

