STA220H1: The Practice of Statistics I

Elena Tuzhilina

February 28, 2023

Please turn on your videos :)

Figure 1: [\[picture source\]](https://mobile.twitter.com/rpcrowe/status/1586472718291148813)

Announcements

- 1. Submit your regrade requests on Crowdmark by Thursday.
- 2. Midterm 2 is in two weeks! Same logistics (the review session will be held online this time).

Agenda for today

- ▶ Recap: normal distribution, sample mean distribution and CLT
- ▶ More about CLT
- \blacktriangleright Confidence intervals

Recap: expectation and variance

Expectation

 \blacktriangleright If X is a random variable and a is a number then

$$
E(a\cdot X)=a\cdot E(X)
$$

 \blacktriangleright If Y is also a random variable then

$$
E(X + Y) = E(X) + E(Y)
$$

Variance

 \triangleright If X is a random variable and a is a number then

$$
Var(a \cdot X) = a^2 \cdot Var(X)
$$

If Y is also a random variable and it is independent of X then

$$
Var(X + Y) = Var(X) + Var(Y)
$$

Recap: expectation and variance

If X_1, \ldots, X_n are independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ and $\bar{X} = \frac{X_1 + ... + X_n}{n}$ is the average of these random variables then

$$
E(\bar{X}) = \mu \text{ and } Var(\bar{X}) = \frac{\sigma^2}{n}
$$

Recap: density curves

We use **density curves** to describe the distribution of continuous random variables:

- \blacktriangleright The total area under the density curve is always 1
- \triangleright The area under the curve bounded by a and b vertical lines is equal to $P(a \leq X \leq b)$

Recap: normal distribution

Normal random variable X ∼ Normal(*µ, σ*²) has symmetric, bell-shaped and unimodal distribution.

 \blacktriangleright $\mu = E(X)$ controls the "center" of the distribution \triangleright $\sigma^2 = \text{Var}(X)$ controls the "spread" of the distribution

Recap: normal distribution

Standard normal distribution has $\mu = 0$ and $\sigma^2 = 1$.

▶ To find the probabilities $P(a \leq X \leq b)$ for standard normal we use the distribution table

 $P(-1 \le X \le 1.25) =$

Recap: normal distribution

▶ If X ∼ Normal(*µ, σ*²) we use **standardization**. The transformed variable $Y = \frac{X-\mu}{\sigma}$ $\frac{-\mu}{\sigma}$ has standard normal distribution.

For example, if X ∼ Normal(1*,* 100)

 $P(-6 < X < 6) =$

We want to study the **population parameter** μ , e.g. the average life expectancy in Canada.

We take a **sample** of n people and compute the average age of death for them.

Black dots: sample x_1, \ldots, x_n

Red dot: sample mean $\bar{x} = \frac{x_1 + ... + x_n}{n}$

If your sample size is small (e.g. $n = 3$), then \bar{x} can significantly vary from sample to sample.

If your sample size is large (e.g. $n = 100$), then the variation in \bar{x} is less considerable.

Can we characterize the behavior of \bar{x} ?

Recap: alternative view

- \blacktriangleright We have *n* random variables X_1, \ldots, X_n
- \triangleright We assume that they have the same distribution with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$
- ▶ We consider $\bar{X} = \frac{X_1 + ... + X_n}{n}$, it is a **random variable**
- ▶ Each sample mean \bar{x} is a realization of \bar{X}

What is the probability density of \overline{X} ?

Recap: central limit theorem

Central limit theorem: for *n* large enough

$$
\bar{X} \text{ approximately } \sim \text{Normal}\left(\mu, \frac{\sigma^2}{n}\right)
$$

- ▶ For different samples \bar{x} will "jump around" μ
- ▶ The larger the sample size the closer \bar{x} to μ

CLT applies to almost all types of probability distributions.

Example: the probability to win a lottery ticket is p . Suppose we buy n tickets and compute the **proportion of winning tickets**.

- ▶ X1*, . . . ,* Xⁿ ∼ Bernoulli(p) is the outcome for each ticket ▶ $Y = X_1 + ... + X_n \sim Binomial(n, p)$ is the total number of winning tickets
- $\blacktriangleright \bar{X} = \frac{Y}{n}$ $\frac{y}{n}$ is the proportion of winning tickets

What is the distribution for the proportion of winning tickets?

Exercise

The probability to win in a lottery p . Suppose we buy n tickets. $E(\bar{X}) =$

$Var(\bar{X}) =$

Example: $n = 5$ and $p = 0.1$. Note that \overline{X} has discrete distribution.

Example: $n = 10$ and $p = 0.1$. Note that \overline{X} has discrete distribution.

Example: $n = 100$ and $p = 0.1$. Note that if n is large enough

- ▶ For different samples the proportion of winning tickets will "jump around" p
- ▶ The larger the sample size the closer the proportion of winning tickets to p

Confidence intervals

We want to study the average life expectancy in Canada.

We take a sample of 25 people and record their ages of death

ages

[1] 74.7 82.8 72.6 97.0 84.3 72.8

We compute the sample mean for these 25 people

mean(ages)

[1] 82.7

We claim that it is an **estimate** of the average life expectancy in Canada. How confident are we in our estimate?

Confidence intervals **CLT**:

$$
\bar{X} \text{ approximately } \sim \text{Normal}\left(\mu, \frac{\sigma^2}{n}\right)
$$

Standardization:

$$
\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \text{ approximately } \sim \text{Normal}(0,1)
$$

Distribution table:

$$
P\left(-1.96\leq \frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\leq 1.96\right)=0.95
$$

Interval for *µ*:

$$
P\left(\bar{X} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right) = 0.95
$$

95% confidence interval for *µ*:

$$
\left[\bar{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right]
$$

How to find 90% confidence interval? How to find 80% confidence interval?

95% confidence interval for *µ*:

$$
\left[\bar{x} - 1.96 \cdot \frac{s}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{s}{\sqrt{n}}\right]
$$
?

sd(ages)

[1] 9.5

Alternative view

- \blacktriangleright We have *n* random variables X_1, \ldots, X_n
- $\blacktriangleright \bar{X} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n X_i$ is a **random variable**
- ▶ Each sample mean \bar{x} is a realization of \bar{X}
- ▶ $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is a **random variable**
- Each sample variance s^2 is a realization of S^2

Standardization:

$$
\frac{\bar{X}-\mu}{S/\sqrt{n}}\text{ approximately } \sim t_{n-1}
$$

- \triangleright "t distribution with $n-1$ degrees of freedom"
- \blacktriangleright It is similar to normal, but not quite...

Normal: $a = 1.96$

t with df = 3: $a = 3.18$

t with df = 10: $a = 2.23$

t with df = 50: $a = 2.01$

95% confidence interval for *µ*:

$$
\left[\bar{x} - a \cdot \frac{s}{\sqrt{n}}, \bar{x} + a \cdot \frac{s}{\sqrt{n}}\right]
$$

Where a is found from the distribution table.

How to find 90% confidence interval? How to find 80% confidence interval?

Confidence intervals: more examples

We want to estimate the probability to win in the lottery.

We take a sample of 50 tickets and record the outcomes (1 - win, $0 - \text{lose}$

tickets

```
## [1] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
```
We compute the sample mean for these 50 outcomes (i.e. proportion of winning tickets)

mean(tickets)

[1] 0.08

We claim that it is an **estimate** of the probability to win the lottery. How confident are we in our estimate?

Confidence intervals: more examples

CLT:

$$
\bar{X} \text{ approximately } \sim \text{Normal}\left(p, \frac{p(1-p)}{n}\right)
$$

95% confidence interval for p (known *σ*):

$$
\left[\bar{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right]
$$

95% confidence interval for p (unknown *σ*):

$$
\left[\bar{x} - 1.96 \cdot \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}, \bar{x} + 1.96 \cdot \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}\right]
$$

How to find 90% confidence interval? How to find 80% confidence interval?

TO DO

- 1. [Module 6. Confidence Intervals Part 1](https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-1/) and [Module 7.](https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-2/) [Confidence Intervals Part 2](https://sta220.utstat.utoronto.ca/modules/confidence-intervals-part-2/)
- 2. Quiz 7 due Monday (March 6) @ 11:59 PM (EST)
- 3. Practice Problem Set 7