STA220H1: The Practice of Statistics I

Elena Tuzhilina

February 28, 2023

Please turn on your videos :)

Figure 1: [picture source]

Announcements

- 1. Submit your regrade requests on Crowdmark by Thursday.
- 2. Midterm 2 is in two weeks! Same logistics (the review session will be held online this time).

Agenda for today

- \triangleright Recap: normal distribution, sample mean distribution and CLT
- \blacktriangleright More about CLT
- \blacktriangleright Confidence intervals

Recap: expectation and variance

Expectation

► If X is a random variable and a is a number then
\n
$$
E(\cancel{d} \cdot X) = a \cdot E(X)
$$

 \blacktriangleright If *Y* is also a random variable then

$$
E(X + Y) = E(X) + E(Y)
$$

Variance

If X is a random variable and \overline{a} is a number then

$$
Var(a \cdot X) = a^2 \cdot Var(X)
$$

If *Y* is also a random variable and it is independent of X then

$$
Var(X + Y) = Var(X) + Var(Y)
$$

Recap: expectation and variance

$$
RV
$$
\nIf $(X_1, ..., X_n)$ are independent random variables with $E(X_i) = \mu$
\nand $Var(X_i) = \sigma^2$ and $\bar{X} = \left(\frac{\hat{X}_1 + ... + \hat{X}_n}{n}\right)$ is the average of these
\nrandom variables then\n
$$
E(\bar{X}) = \mu
$$
 and $Var(\bar{X}) = \frac{\sigma^2}{n}$ \n
$$
\left(\begin{array}{c}\n\gamma \\
\gamma\n\end{array}\right)
$$
\n
$$
X_1, Z_2, X_3 \sim Bernou\{L^2(\rho)\}
$$
\n
$$
E(X_i) = \rho \quad Var\{X_i\} = \rho \cdot (A - \rho)
$$
\n
$$
E\left(\begin{array}{c}\n\bar{X}_i \\
\bar{X}_i\n\end{array}\right) = \rho \quad Var\left(\begin{array}{c}\n\bar{X}_i \\
\bar{X}_i\n\end{array}\right) = \frac{\rho \cdot (A - \rho)}{n}
$$

Recap: density curves

We use **density curves** to describe the distribution of continuous random variables:

- \blacktriangleright The total area under the density curve is always 1
- \triangleright The area under the curve bounded by a and b vertical lines is equal to $P(a \leq X \leq b)$

Recap: normal distribution

Normal random variable $X \sim Normal(\mu, \sigma^2)$ has symmetric, bell-shaped and unimodal distribution.

Recap: normal distribution

Standard normal distribution has $\mu = 0$ and $\sigma^2 = 1$.

 \blacktriangleright To find the probabilities $P(a \leq X \leq b)$ for standard normal we use the distribution table

Graph="1" style="text-align: center;">\n**Standard normal distribution**\n

\nStandard normal distribution has
$$
\mu = 0
$$
 and $\sigma^2 = 1$.

\n▶ To find the probabilities $P(a \leq X \leq b)$ for standard new use the distribution table\n

\n $\Rightarrow P(X \leq \ldots)$

\n $P(-1 \leq X \leq 1.25) = P(X \leq 1.25) - P(X \leq -1)$

Recap: normal distribution

If $X \sim Normal(\mu, \sigma^2)$ we use standardization. The transformed variable $Y = \frac{X-\mu}{I}$ has standard normal distribution. $\mu_{\alpha}^2 \rightarrow \epsilon = 10$ For example, if $X \sim Normal(1, 100)$ P(-6 ≤ X ≤ 6) = P (-<u>6 -1</u> ∠ (X - 1) ∠ 6 -1)

= P (-0.7 ≤ Y ≤ 0.5) = = $P(Y \le 0.5) - P(Y^2 - 0.7))$ 0.5

We want to study the **population parameter** μ , e.g. the average life expectancy in Canada.

We take a **sample** of *n* people and compute the average age of death for them.

Black dots: sample *x*1*,..., xⁿ*

Red dot: sample mean $\bar{x} = \frac{x_1 + ... + x_n}{n}$ \approx \bigwedge

If your sample size is small (e.g. $n = 3$), then \bar{x} can significantly vary from sample to sample.

If your sample size is large (e.g. $n = 100$), then the variation in \bar{x} is less considerable.

Can we characterize the behavior of \bar{x} ?

Recap: alternative view

- \triangleright We have *n* random variables $X_1, \ldots, X_n \longrightarrow \infty$...
- \triangleright We assume that they have the same distribution with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$
- ▶ We consider $\bar{X} = \frac{X_1 + ... + X_n}{n}$, it is a **random variable**
- Each sample mean \bar{x} is a realization of \bar{X}

What is the probability density of \overline{X} ?

Recap: central limit theorem

Central limit theorem: for *n* large enough

 \bar{X} approximately \sim *Normal* $\mu,$ $\left(\frac{\sigma^2}{4} \right)$

n

).

 $E(\overline{x}) = \mu_2$
var $(\overline{x}) = \frac{6^2}{\nu_2}$
Sd $(\overline{x}) = \frac{6}{\nu_2}$

- For different samples \bar{x} will "jump around" μ
- The larger the sample size the closer \bar{x} to μ

CLT applies to almost all types of probability distributions.

Example: the probability to win a lottery ticket is *p*. Suppose we buy *n* tickets and compute the **proportion of winning tickets**. ▶ X_1, \ldots, X_n \sim *Bernoulli(p)* is the outcome for each ticket $Y = X_1 + ... + X_n \sim Binomial(n, p)$ is the total number of winning tickets $\#$ winning /h

 $\blacktriangleright \bar{X} = \frac{Y}{n}$ is the proportion of winning tickets

What is the distribution for the proportion of winning tickets?

Exercise

$$
X_{1} = X_{2} \sim \text{Bernoulli}(p) \qquad E(y) = np
$$
\n
$$
\overline{X} \qquad \qquad \text{Var}(y) = n \cdot p(1-p)
$$

The probability to win in a lottery p . Suppose we buy n tickets.

$$
E(\bar{X}) = \rho
$$

$$
Var(\bar{X}) = \frac{\rho (1-\rho)}{\hbar}
$$

$$
X_{1} = X_{n} \sim Bern(P)
$$

\n
$$
E(X_{i}) = P
$$

\n
$$
Var(X_{i}) = P(1-P)
$$

\n
$$
E(X) = P \quad Var(X) = \frac{P(1-P)}{P}
$$

Central limit theorem: more examples

$$
\sqrt{0}
$$
, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $\frac{1}{1}$

Example: $n = 5$ and $p = 0.1$. Note that \overline{X} has discrete distribution.

Central limit theorem: more examples

Example: $n = 10$ and $p = 0.1$. Note that \overline{X} has discrete distribution.

Central limit theorem: more examples

Example: $n = 100$ and $p = 0.1$. Note that if *n* is large enough $N(0.1, \frac{0.1 \cdot 0.9}{100})$
s large enough

 \blacktriangleright For different samples the proportion of winning tickets will "jump around" *p* vinning tickets wi $\mathcal{P}\left(\bar{x} \subseteq \mathcal{O} \ldotp \mathcal{S}\right)$

If The larger the sample size the closer the proportion of
winning tickets to p
 $\begin{array}{ccc} 0 & \frac{A}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\ 0 & \frac{2}{\sqrt{2}} & \frac{2}{\sqrt{2}} \end{array}$ winning tickets to *p*

Confidence intervals

We want to study the average life expectancy in Canada. $\,(\gamma)\,$ We want to study the average life expectancy in Canada. (1)
We take a sample of 25 people and record their ages of death

ages

[1] 74.7 82.8 72.6 97.0 84.3 72.8

We compute the sample mean for these 25 people

mean(ages)

$$
^{\#}\ \ \, 11332.7 = 26 \simeq N \qquad \qquad 82.7 \pm 5
$$

We claim that it is an **estimate** of the average life expectancy in Canada. *How confident are we in our estimate?*

Confidence intervals CLT:

$$
\bar{X} \text{ approximately } \sim \text{Normal}\left(\mu, \frac{\sigma^2}{n}\right)
$$

Standardization:

$$
2 = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \text{ approximately } \sim \text{Normal}(0, 1) \qquad \text{N}(0, 1)
$$
\n
$$
-1.28 \qquad 1.28 \qquad \text{R}(0, 1) \qquad \text{N}(0, 1)
$$
\n
$$
-1.28 \qquad 1.28 \qquad \text{R}(0, 1) \qquad \text{N}(0, 1)
$$
\n
$$
P(-1.28 \qquad 1.28 \qquad \text{R}(0, 1) \qquad \text{N}(0, 1)
$$
\n
$$
P(-1.28 \qquad 1.28 \qquad \text{R}(0, 1) \qquad \text{N}(0, 1)
$$
\n
$$
P(-1.28 \qquad 1.28 \qquad \text{R}(0, 1) \qquad \text{N}(0, 1)
$$
\n
$$
P(-1.28 \qquad 1.28 \qquad \text{N}(0, 1) \qquad \text{N}(0, 1) \qquad \text{N}(0, 1)
$$
\n
$$
P(-1.28 \qquad 1.28 \qquad \text{N}(0, 1) \qquad \text
$$

Confidence intervals (known *σ*)

95% confidence interval for *µ*:

confidence interval for
$$
\mu
$$
:
\n
$$
\left[\bar{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right]
$$
\n
$$
\begin{array}{c}\n\text{margin of error} \\
\begin{aligned}\nG &= 1 & \bar{x} = 82.7 \\
\mathcal{M} &\leq \left[\sqrt{82.7} - 1.96 \cdot \frac{1}{5}\right] \\
\frac{72.7}{5} - \frac{92.7}{5} &\frac{55\%}{5}\n\end{aligned}\n\end{array}
$$

Exercise

How to find 90% confidence interval? How to find 80% confidence interval?

$$
\begin{bmatrix} \bar{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}} \end{bmatrix} \qquad \qquad \begin{bmatrix} 60\% \\ 60\% \end{bmatrix}
$$

\nmargin of error
\n-1.64 + 1.28 + 0.28

Confidence intervals (unknown σ)

95% confidence interval for μ :

$$
\left[\bar{x} - 1.96 \cdot \frac{s}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{s}{\sqrt{n}}\right]
$$
?

$$
\tilde{x} \approx \mu
$$
 $S \approx 6$
 $\mu \in [82.7 - 1.96 \cdot \frac{9.5}{5}, 82.7 + 1.96 \cdot \frac{9.5}{5}]$

sd(ages)

$$
\texttt{# [1] 9.5} \longleftarrow \textit{Sample } \textit{SQ}
$$

Alternative view

It is similar to normal, but not quite...

Confidence intervals (unknown *σ*)

Normal: a = 1.96

t with df =
$$
3
$$
 a = 3.18

t with df = 10: $a = 2.23$

t with df = 50: $a = 2.01$

Confidence intervals (unknown σ) 95% \cdot 6 $a = 1.96$

95% confidence interval for μ : $\int \frac{g}{x}$ $\left(\frac{x}{a}\right)$ $\frac{s}{\sqrt{n}}, \bar{x} + a \cdot \frac{s}{\sqrt{n}}$

Where a is found from the distribution table.

$$
t_{n-1} = \underbrace{[6]}_{82.7} = 2.06 \cdot \frac{9.5}{5}, 82.7 + 2.06 \cdot \frac{9.5}{5}
$$

 0.025

 $d = 2.06$

nozs

Exercise

Confidence intervals: more examples

We want to estimate the probability to win in the lottery. $\;\;\left(\,P\right)$ We take a sample of 50 tickets and record the outcomes (1 - win, $0 - \text{lose}$

tickets

[1] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

We compute the sample mean for these 50 outcomes (i.e. proportion of winning tickets)

mean(tickets)

 $#$ [1] 0.08 = $\overline{\alpha} \simeq \beta$

We claim that it is an **estimate** of the probability to win the lottery. *How confident are we in our estimate?*

Confidence intervals: more examples

Intidence intervals. More examples

\nCLT:

\n
$$
\bar{X} \text{ approximately } \sim \text{Normal}\left(p, \frac{p(1-p)}{n}\right)
$$
\n95% confidence interval for p (known σ):

\n
$$
P(A \cap B) = \begin{cases} \frac{p(1-p)}{n} & \text{if } p \text{ is a positive number.}\end{cases}
$$

95% confidence interval for p (known σ):

$$
\left[\bar{x}-1.96\cdot\frac{\sigma}{\sqrt{n}},\bar{x}+1.96\cdot\frac{\sigma}{\sqrt{n}}\right]
$$

95% confidence interval for p (unknown σ):

$$
\left[\bar{x} - 1.96 \cdot \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}, \bar{x} + 1.96 \cdot \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}\right]
$$
\n
$$
\left[\begin{array}{ccc} 0.08 - 1.96 \cdot \sqrt{\frac{0.08 \cdot 0.92}{n}} & 0.08 + 1.96 \\ 1.64 & 1.28 \end{array}\right]
$$

p (1−p) ≈

 $\overline{\chi}(\overline{1-\overline{\chi}})$

How to find 90% confidence interval? How to find 80% confidence interval?

TO DO

- 1. Module 6. Confidence Intervals Part 1 and Module 7. Confidence Intervals Part 2
- 2. Quiz 7 due Monday (March 6) @ 11:59 PM (EST)
- 3. Practice Problem Set 7