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Please turn on your videos :)

Figure 1: [picture source]



Announcements

1. Submit your regrade requests on Crowdmark by Thursday.

2. Midterm 2 is in two weeks! Same logistics (the review session

will be held online this time).



Agenda for today

I Recap: normal distribution, sample mean distribution and CLT

I More about CLT

I Confidence intervals



Recap: expectation and variance
Expectation

I If X is a random variable and a is a number then

E (a · X ) = a · E (X )

I If Y is also a random variable then

E (X + Y ) = E (X ) + E (Y )

Variance

I If X is a random variable and a is a number then

Var(a · X ) = a
2 · Var(X )

I If Y is also a random variable and it is independent of X then

Var(X + Y ) = Var(X ) + Var(Y )
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Recap: expectation and variance

If X1, . . . , Xn are independent random variables with E (Xi) = µ
and Var(Xi) = ‡2

and X̄ =
X1+...+Xn

n is the average of these

random variables then

E (X̄ ) = µ and Var(X̄ ) =
‡2

n
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Recap: density curves
We use density curves to describe the distribution of continuous

random variables:

I The total area under the density curve is always 1

I The area under the curve bounded by a and b vertical lines is

equal to P(a Æ X Æ b)
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Recap: normal distribution

Normal random variable X ≥ Normal(µ, ‡2
) has symmetric,

bell-shaped and unimodal distribution.

I µ = E (X ) controls the “center” of the distribution

I ‡2
= Var(X ) controls the “spread” of the distribution
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Recap: normal distribution
Standard normal distribution has µ = 0 and ‡2

= 1.

I To find the probabilities P(a Æ X Æ b) for standard normal

we use the distribution table
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Recap: normal distribution

I If X ≥ Normal(µ, ‡2
) we use standardization. The

transformed variable Y =
X≠µ

‡ has standard normal

distribution.

For example, if X ≥ Normal(1, 100)

P(≠6 Æ X Æ 6) =
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Recap: sample mean ditributoin
We want to study the population parameter µ, e.g. the average

life expectancy in Canada.

We take a sample of n people and compute the average age of

death for them.

Black dots: sample x1, . . . , xn

Red dot: sample mean x̄ =
x1+...+xn

n
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Recap: sample mean ditributoin
If your sample size is small (e.g. n = 3), then x̄ can significantly

vary from sample to sample.
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Recap: sample mean ditributoin
If your sample size is large (e.g. n = 100), then the variation in x̄ is

less considerable.
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Recap: sample mean ditributoin

Can we characterize the behavior of x̄?
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Recap: alternative view
I We have n random variables X1, . . . , Xn
I We assume that they have the same distribution with

E (Xi) = µ and Var(Xi) = ‡2

I We consider X̄ =
X1+...+Xn

n , it is a random variable
I Each sample mean x̄ is a realization of X̄

What is the probability density of X̄?

3 100

70 80 90 100 70 80 90 100
0.0

0.1

0.2

0.3

0.4

age of death (years)

de
ns

ity
-> x..- Dn



Recap: central limit theorem
Central limit theorem: for n large enough

X̄ approximately ≥ Normal

A

µ,
‡2

n

B

I For di�erent samples x̄ will “jump around” µ
I The larger the sample size the closer x̄ to µ
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Central limit theorem: more examples

CLT applies to almost all types of probability distributions.

Example: the probability to win a lottery ticket is p. Suppose we

buy n tickets and compute the proportion of winning tickets.

I X1, . . . , Xn ≥ Bernoulli(p) is the outcome for each ticket

I Y = X1 + . . . + Xn ≥ Binomial(n, p) is the total number of

winning tickets

I X̄ =
Y
n is the proportion of winning tickets

What is the distribution for the proportion of winning tickets?
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Exercise

The probability to win in a lottery p. Suppose we buy n tickets.

E (X̄ ) =

Var(X̄ ) =

X...- Xn e Bernoulli(p) E(y) = up
Var(y)=n.p(1-p)

X
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Central limit theorem: more examples

Example: n = 5 and p = 0.1. Note that X̄ has discrete

distribution.
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Central limit theorem: more examples

Example: n = 10 and p = 0.1. Note that X̄ has discrete

distribution.
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Central limit theorem: more examples
Example: n = 100 and p = 0.1. Note that if n is large enough

I For di�erent samples the proportion of winning tickets will

“jump around” p

I The larger the sample size the closer the proportion of

winning tickets to p
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Confidence intervals
We want to study the average life expectancy in Canada.

We take a sample of 25 people and record their ages of death

ages

## [1] 74.7 82.8 72.6 97.0 84.3 72.8

We compute the sample mean for these 25 people

mean(ages)

## [1] 82.7

We claim that it is an estimate of the average life expectancy in

Canada. How confident are we in our estimate?
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Confidence intervals
CLT:

X̄ approximately ≥ Normal

A

µ,
‡2

n

B

Standardization:

X̄ ≠ µ

‡/
Ô

n
approximately ≥ Normal (0, 1)

Distribution table:

P

A

≠1.96 Æ X̄ ≠ µ

‡/
Ô

n
Æ 1.96

B

= 0.95

Interval for µ:

P

3
X̄ ≠ 1.96 · ‡Ô

n
Æ µ Æ X̄ + 1.96 · ‡Ô

n

4
= 0.95
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Confidence intervals (known ‡)

95% confidence interval for µ:

5
x̄ ≠ 1.96 · ‡Ô

n
, x̄ + 1.96 · ‡Ô

n

6

e
e

margin of error

6 =1 x =82.7

M 782.7-1.96, 82.7 +1.96.5]E

12.7 - 92.755%

N- 83.750%



Exercise

How to find 90% confidence interval? How to find 80% confidence

interval?

10%d

- 1.64 +1.64 90%

-2.2880%



Confidence intervals (unknown ‡)

95% confidence interval for µ:

5
x̄ ≠ 1.96 · sÔ

n
, x̄ + 1.96 · sÔ

n

6
?

sd(ages)

## [1] 9.5
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Alternative view

I We have n random variables X1, . . . , Xn
I X̄ =

1
n

qn
i=1 Xi is a random variable

I Each sample mean x̄ is a realization of X̄

I S
2

=
1

n≠1
qn

i=1 (Xi ≠ X̄ )
2

is a random variable
I Each sample variance s

2
is a realization of S
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Confidence intervals (unknown ‡)

Standardization:

X̄ ≠ µ

S/
Ô

n
approximately ≥ tn≠1

I “t distribution with n ≠ 1 degrees of freedom”

I It is similar to normal, but not quite. . .
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Confidence intervals (unknown ‡)
Normal: a = 1.96

t with df = 3: a = 3.18

t with df = 10: a = 2.23

t with df = 50: a = 2.01
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Confidence intervals (unknown ‡)

95% confidence interval for µ:

5
x̄ ≠ a · sÔ

n
, x̄ + a · sÔ

n

6

Where a is found from the distribution table.

95%a =1.96
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Exercise

How to find 90% confidence interval? How to find 80% confidence

interval?

a =1.71 132

90%5%
*
80%co



Confidence intervals: more examples
We want to estimate the probability to win in the lottery.

We take a sample of 50 tickets and record the outcomes (1 - win,

0 - lose)

tickets

## [1] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

We compute the sample mean for these 50 outcomes

(i.e. proportion of winning tickets)

mean(tickets)

## [1] 0.08

We claim that it is an estimate of the probability to win the

lottery. How confident are we in our estimate?
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Confidence intervals: more examples

CLT:

X̄ approximately ≥ Normal

3
p,

p(1 ≠ p)

n

4

95% confidence interval for p (known ‡):

5
x̄ ≠ 1.96 · ‡Ô

n
, x̄ + 1.96 · ‡Ô

n

6

95% confidence interval for p (unknown ‡):

S
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Û
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n
, x̄ + 1.96 ·

Û
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n
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x=P
p(1 -p)=
x(1 -x)

[0.08-1.96.92,0.08 +1.965.)
1.64
1.28



Exercise

How to find 90% confidence interval? How to find 80% confidence

interval?



TO DO

1. Module 6. Confidence Intervals Part 1 and Module 7.

Confidence Intervals Part 2

2. Quiz 7 due Monday (March 6) @ 11:59 PM (EST)

3. Practice Problem Set 7


