STA220H1: The Practice of Statistics I

Elena Tuzhilina

February 28, 2023

Please turn on your videos :)

Figure 1: [picture source]

Announcements

- 1. Submit your regrade requests on Crowdmark by Thursday.
- 2. Midterm 2 is in two weeks! Same logistics (the review session will be held online this time).

Agenda for today

- ▶ Recap: normal distribution, sample mean distribution and CLT
- More about CLT
- Confidence intervals

Recap: expectation and variance

Expectation

▶ If X is a random variable and a is a number then

$$E(A \cdot X) = a \cdot E(X)$$

▶ If Y is also a random variable then

$$E(X + Y) = E(X) + E(Y)$$

Variance

▶ If X is a random variable and a is a number then

$$Var(a \cdot X) = a^2 \cdot Var(X)$$

▶ If Y is also a random variable and it is independent of X then

$$Var(X + Y) = Var(X) + Var(Y)$$

Recap: expectation and variance

If
$$X_1,\ldots,X_n$$
 are independent random variables with $E(X_i)=\mu$ and $Var(X_i)=\sigma^2$ and $\bar{X}=\underbrace{X_1+\ldots+X_n}_n$ is the average of these random variables then

$$E(\bar{X}) = \mu$$
 and $Var(\bar{X}) = \frac{\sigma^2}{n}$

?
$$X_{1} = X_{n} \sim \text{Bernou}(l_{i}(p))$$

 $E(X_{i}) = p \quad \text{Var}(X_{i}) = p \cdot (1-p)$
 $E(\overline{X}) = p \quad \text{Var}(\overline{X}) = \frac{p(1-p)}{n}$

Recap: density curves

We use **density curves** to describe the distribution of continuous random variables:

- ▶ The total area under the density curve is always 1
- ▶ The area under the curve bounded by a and b vertical lines is equal to $P(a \le X \le b)$

Recap: normal distribution

Normal random variable $X \sim Normal(\mu, \sigma^2)$ has symmetric, bell-shaped and unimodal distribution.

- $\mu = E(X)$ controls the "center" of the distribution
- $\sigma^2 = Var(X)$ controls the "spread" of the distribution

Recap: normal distribution

Standard normal distribution has $\mu = 0$ and $\sigma^2 = 1$.

▶ To find the probabilities $P(a \le X \le b)$ for standard normal

we use the distribution table
$$\leftarrow$$
 $P(X \in ...)$

$$P(-1 \le X \le 1.25) = P(X \le 1.25) - P(X \le -1)$$

Recap: normal distribution

▶ If $X \sim Normal(\mu, \sigma^2)$ we use **standardization**. The transformed variable $Y = \frac{X - \mu}{2}$ has standard normal distribution.

For example, if
$$X \sim Normal(1, 100)$$

$$P(-6 \le X \le 6) = P\left(\frac{-6-1}{10} \le \frac{X-1}{10}\right) = P\left(-0.7 \le Y \le 0.5\right) = P$$

$$= P(J \leq 0.5) - P(J - 0.7) | I(I/I/I) | -0.7 0.5$$

We want to study the **population parameter** μ , e.g. the average life expectancy in Canada.

We take a **sample** of n people and compute the average age of death for them.

Black dots: sample x_1, \ldots, x_n

Red dot: sample mean $\bar{x} = \frac{x_1 + ... + x_n}{n} \approx \mathcal{M}$

If your sample size is small (e.g. n=3), then \bar{x} can significantly vary from sample to sample.

If your sample size is large (e.g. n = 100), then the variation in \bar{x} is less considerable.

Can we characterize the behavior of \bar{x} ?

Recap: alternative view

- \blacktriangleright We have *n* random variables $X_1, \ldots, X_n \longrightarrow x_1 \ldots x_n$
- We assume that they have the same distribution with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$
- We consider $\bar{X} = \frac{X_1 + ... + X_n}{n}$, it is a random variable
- lacktriangle Each sample mean $ar{x}$ is a realization of $ar{X}$

What is the probability density of \bar{X} ?

Recap: central limit theorem

Central limit theorem: for *n* large enough

$$ar{X}$$
 approximately \sim *Normal* $\left(\mu, \overbrace{n}^{2}\right)$

 $E(\bar{x}) = M$ $var(\bar{x}) = \frac{6}{N}$ $Sd(\bar{x}) = \frac{6}{1}$

- lacktriangle For different samples ar x will "jump around" μ
- ▶ The larger the sample size the closer \bar{x} to μ

CLT applies to almost all types of probability distributions.

Example: the probability to win a lottery ticket is p. Suppose we buy n tickets and compute the **proportion of winning tickets**.

#Winning / W

- $ightharpoonup X_1, \ldots, X_n \sim Bernoulli(p)$ is the outcome for each ticket
- ▶ $Y = X_1 + ... + X_n \sim Binomial(n, p)$ is the total number of winning tickets
- $\bar{X} = \frac{Y}{n}$ is the proportion of winning tickets

What is the distribution for the proportion of winning tickets?

Exercise

$$X_1 - x_n \sim \text{Bernoulli}(p) \quad E(y) = np$$

$$Var(y) = n \cdot p(1-p)$$

The probability to win in a lottery
$$p$$
. Suppose we buy n tickets.
$$E(\bar{X}) = P$$

$$X_{(x,y,z)} \times Best$$

$$E(\bar{X}) = P$$

$$Var(\bar{X}) = \frac{P(1-P)}{P}$$

$$Var(\bar{X}) = \frac{P(1-P)}{P}$$

$$Var(\bar{X}) = P(1-P)$$

$$E(\bar{X}) = P$$

$$Var(\bar{X}) = P \frac{(1-p)}{N}$$

$$Var(\bar{X}) = P \frac{(1-p)}{N}$$

$$E(\bar{X}) = P \frac{(1-p)}{N}$$

$$E(\bar{X}) = P \frac{(1-p)}{N}$$

Example: n = 5 and p = 0.1. Note that \bar{X} has discrete distribution.

Example: n = 10 and p = 0.1. Note that \bar{X} has discrete distribution.

 $N(0.1, \frac{0.1.0.9}{100})$

Example: n = 100 and p = 0.1. Note that if n is large enough

- For different samples the proportion of winning tickets will "jump around" p $P(x \leftarrow 0.5)$
- The larger the sample size the closer the proportion of winning tickets to p $0 \frac{1}{\sqrt{p_0}} \frac{2}{\sqrt{p_0}} \frac{99}{\sqrt{p_0}}$

Confidence intervals

We want to study the average life expectancy in Canada. (\mathcal{M}) We take a sample of 25 people and record their ages of death

ages

We compute the sample mean for these 25 people

mean(ages)

[1]
$$82.7 = \overline{x} \simeq M$$
 82.7 ± 5

We claim that it is an **estimate** of the average life expectancy in Canada. *How confident are we in our estimate?*

Confidence intervals

CLT:

$$ar{X}$$
 approximately \sim Normal $\left(\mu, rac{\sigma^2}{n}
ight)$

Standardization:

Standardization:
$$2 = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \text{ approximately } \sim \textit{Normal } (0,1) \qquad \textit{N}(0,1)$$

$$-1.26 \qquad 1.26 \qquad \text{Distribution table:} \qquad 1.26 \qquad \text{D}(-\alpha \le 2 \le \alpha) = 0.95$$

$$P\left(-1.96 \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le 1.96\right) = 0.5 \text{ order} \qquad 0.1$$

Interval for μ :

$$P\left(\bar{X} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

$$\frac{\bar{X} - M}{6/\sqrt{n}} \ge -1.96 \Longrightarrow \qquad \bar{X} - M \ge -1.96 \cdot \frac{C}{\sqrt{n}} \Longrightarrow \bar{X} + 1.96 \cdot \frac{6}{\sqrt{n}} \ge M$$

Confidence intervals (known σ)

95% confidence interval for μ :

$$\begin{bmatrix}
\bar{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}
\end{bmatrix}$$
margin of error

$$\mathcal{E} = 4 \quad \overline{x} = 82.7$$

$$\mathcal{H} \in \left[82.7 - 1.96 \cdot \frac{1}{5} \right] \quad 82.7 + 1.96 \cdot \frac{1}{5} \right]$$

$$\frac{72.7 - 92.7}{81.7 - 83.7} \quad 50\%$$

Exercise

How to find 90% confidence interval? How to find 80% confidence interval?

Confidence intervals (unknown σ)

95% confidence interval for μ :

$$\begin{bmatrix} \bar{x} - 1.96 \cdot \frac{s}{\sqrt{n}}, \bar{x} + 1.96 \cdot \frac{s}{\sqrt{n}} \end{bmatrix}?$$

$$\chi_{1} \dots \chi_{n} \longrightarrow S^{2} = \frac{1}{h-1} \sum_{i=1}^{n} (\chi_{i} - \bar{\chi}_{i})^{2} \longrightarrow S = \dots$$

$$\bar{\chi} \simeq \mathcal{M} \qquad S \simeq \mathcal{C}$$

$$\mathcal{M} \in [P2.7 - 1.96 \cdot \frac{9.5}{5}]$$

$$sd(ages)$$

[1] 9.5 - Sample Sol

Alternative view

$$x_1 \dots x_n \rightarrow \overline{x}, S, S^2 \stackrel{1}{\cancel{|}} (V_6 \stackrel{1}{\cancel{|}} V_6 \stackrel{1}{\cancel{|$$

- ▶ We have *n* random variables $X_1, ..., X_n$ $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a random variable
- ightharpoonup Each sample mean \bar{x} is a realization of \bar{X}
- **Each** sample variance s^2 is a realization of S^2

- "t distribution with n-1 degrees of freedom"
- It is similar to normal, but not quite...

Confidence intervals (unknown σ)

Normal: a = 1.96

t with df = 3: a = 3.18

t with df = 10: a = 2.23

t with df = 50: a = 2.01

Confidence intervals (unknown σ)

95% confidence interval for
$$\mu$$
: sample $\left[\bar{x} - \left(a\right) \frac{s}{\sqrt{n}}, \bar{x} + a \cdot \frac{s}{\sqrt{n}}\right]$

$$+ a \cdot \frac{s}{\sqrt{n}} \bigg] \qquad 0.025 \qquad 0.025$$
ion table

Where *a* is found from the distribution table.

$$t_{n-1} = t_{64}$$

$$1.96$$

$$1.96$$

$$82.7 - 2.06 \cdot \frac{9.5}{5}, 82.7 + 2.06 \cdot \frac{9.5}{5}$$

Exercise

$$a = 1.91$$

a = 1.32

How to find 90% confidence interval? How to find 80% confidence interval?

Confidence intervals: more examples

We want to estimate the probability to win in the lottery. (p)

We take a sample of 50 tickets and record the outcomes (1 - win, 0 - lose)

tickets

We compute the sample mean for these 50 outcomes (i.e. proportion of winning tickets)

mean(tickets)

[1] 0.08 =
$$\overline{\chi} \simeq \rho$$

We claim that it is an **estimate** of the probability to win the lottery. How confident are we in our estimate?

Confidence intervals: more examples

CLT:
$$\overline{X} \text{ approximately} \sim \textit{Normal} \left(p, \frac{p(1-p)}{n} \right)$$
 95% confidence interval for p (known σ):
$$\overline{X} \simeq P$$

$$\left[\overline{x} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \overline{x} + 1.96 \cdot \frac{\sigma}{\sqrt{n}} \right] \quad \overline{X} (\lambda - \overline{X})$$

95% confidence interval for p (unknown σ): $\begin{bmatrix} \bar{x} - 1.96 \cdot \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}, \bar{x} + 1.96 \cdot \sqrt{\frac{\bar{x}(1-\bar{x})}{n}} \\ 0.08 - 1.96 \cdot \sqrt{\frac{0.06 \cdot 0.92}{50}}, 0.08 + 1.96 \end{bmatrix}$

Exercise

How to find 90% confidence interval? How to find 80% confidence interval?

TO DO

- Module 6. Confidence Intervals Part 1 and Module 7. Confidence Intervals Part 2
- 2. Quiz 7 due Monday (March 6) @ 11:59 PM (EST)
- 3. Practice Problem Set 7