STA220H1: The Practice of Statistics I

Elena Tuzhilina

January 31, 2023

Please turn on your videos :)

394th Judicial District Court

Recording of this hearing or live stream is prohibited.

Violation may constitute contempt of court and result in a fine of up to \$500 and a jail term of up to 180 days.

394th Judicial District Court

Figure 1: [picture source]

- 1. Use this form to provide your feedback for STA220 class. It is anonymous.
- 2. February 7 (in-person): 1 hour of review + 20 mins break + 80 mins test.
- 3. Quiz 5 will be optional (for extra grade!). I will post a lab in R and you can practice coding.

Agenda for today

- Recap: sample space, additions and multiplication rules, conditional probability
- Probability: Bayes' rule
- Random variables: discrete, binomial, normal
- Random variables: expectation and variance

Recap: probability vocabulary

Experiment - any activity that produces an outcome

Sample space - the collection of all possible outcomes of an experiment

$$S = \{O_1, O_2, \dots, O_N\}$$

Event - a subset of the sample space (could be one or more of possible outcomes in the sample space)

$$A = \{O_1, O_3, O_{10}\}$$

Recap: probability of events

Probability of an outcome is

 $0 \leq P(O_i) \leq 1$

The total probability of all outcomes is

$$\sum_{i=1}^{N} P(O_i) = 1$$

To compute the probability of a complex event, add together the probabilities of the outcomes

$$P(A) = P(O_1) + P(O_3) + P(O_{10})$$

Recap: probability of events

Often we can assume that all outcomes in the sample space are equally likely

$$P(O_i) = \frac{1}{\text{total number of outcomes}}$$

In this case the probability of an event is

 $P(A) = \frac{number of outcomes favorable to event A}{total number of outcomes}$

Recap: probability of events

Recap: probability rules

Subtraction - probability of event A not happening is one minus the probability of the event happening.

$$P(\bar{A}) = 1 - P(A)$$

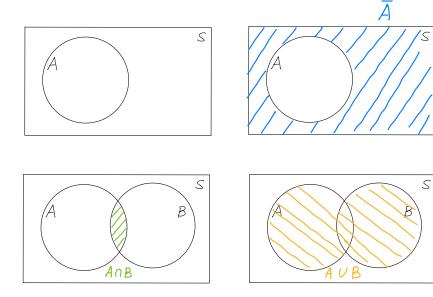
Multiplication - if events A and B are independent then

$$P(both A and B will occur) = P(A) \cdot P(B) = P(A \cap B)$$

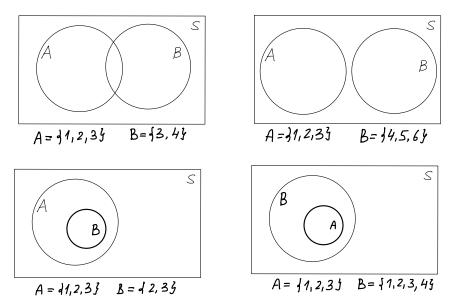
Addition - to find the probability of either of two events occurring, add together the individual probabilities, then subtract the probability of both occurring together

 $P(either A \text{ or } B \text{ occur}) = P(A) + P(B) - P(A \cap B) = P(A \cup B)$

Recap: Venn diagram



Venn diagram S = 21, 2, 3, 4, 5, 63



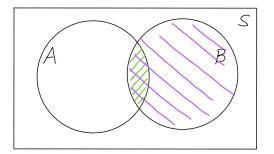
We often wish to determine the probability of some event given that some other event has occurred, which are known as **conditional probabilities**.

To compute the conditional probability of A given B we need to know the joint probability $P(A \cap B)$ as well as the marginal probability P(B)

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

? If A and B are independent, what is P(AIB)?

Venn diagram



$$P(A | B) = \frac{///}{||||} = "proportion of As in B"$$

What is the probability of having a heart attack given that you are active?

##	active	not-active
## heart attack	0.01	0.09
## no heart attack	0.49	0.41

Suppose we have a standard 6-sided die and roll it once. What is the probability that we rolled a 2 given that the number we rolled was even?

Independence

Statistical **independence** between events A and B means that knowing about A does not tell us anything about B.

That is, the probability of A given some value of B is just the same as the overall probability of A

$$P(A|B) = P(A)$$

This is equivalent to

 $P(A \cap B) = P(A) \cdot P(B)$

Are events being active and heart attack independent?

##		active	not-active
##	heart attack	0.01	0.09
##	no heart attack	0.49	0.41

Conditional probability: tree diagram

The probability of getting COVID-19 is

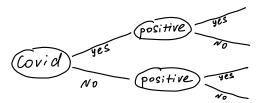
P(covid) = 0.5

 Given that you have COVID-19, the probability of getting a positive test is

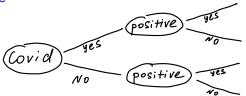
$$P(positive|covid) = 0.9$$

 Given that you do not have COVID-19, the probability of getting a positive test is

 $P(positive|no \ covid) = 0.01$



Bayes' rule



What is the probability to have COVID given that your test is positive?

P(covid | positive) = ?

Bayes' rule

In many cases, we know P(A|B) but we really want to know P(B|A).

In order to reverse a conditional probability, we can use Bayes' rule

$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A|B) \cdot P(B) + P(A|\bar{B}) \cdot P(\bar{B})}$$

Random variable

Random variable takes an outcome from random a experiment and gives a numerical number.

$$O_1 \rightarrow 1 \quad O_2 \rightarrow 3 \quad O_3 \rightarrow 2 \dots O_N \rightarrow 1$$

number of heads when tossing two coins

$$O = |TT TH HT HH$$

$$x = |$$

total score when rolling two dice

number of zeroes in your student ID $\underbrace{\begin{array}{c|c}
 0 = & 10084/2345 & 1101020030 & \dots \\
 X = & & & \dots \\
 x = & & & \dots \\
 \end{array}$

Random variable

Random variable can be discrete or continuous.

Discrete - takes one of a countable list of distinct values

- number of heads when tossing two coins
- total score when rolling two dice
- number of zeroes in your student ID

Continuous - takes any value in an interval or collection of intervals

- the wait time for the next bus
- birth weights of babies

Discrete or continuous?

- number of facebook friends
- heights of the U of T students

Random variable

The probability distribution for a random variable describes how the **probabilities** are distributed over the **values** of the random variable.

number of heads when tossing two coins <u>ТН НТ НН</u> 1 1 2 O = |X = || O*X* = D P(o) = total score when rolling two dice $\begin{array}{c|c} (6,5) & (6,6) \\ \hline 11 & 12 \\ P(x) = \\ \end{array} \begin{array}{c|c} X = & 2 & 3 & 4 & \dots \\ \hline x = & 2 & 3 & 4 & \dots \\ P(x) = & 1 & 1 & \dots \end{array}$ (2,1) ... (1,2) 3 X =2 3 P(ol=

Has two values 0 and 1 that happen with probabilities p and 1-p. Usually used to represent experiments with two outcomes.

coin: 1 if heads, 0 if tails

$$P(X=1) = P(X=0) = P=$$

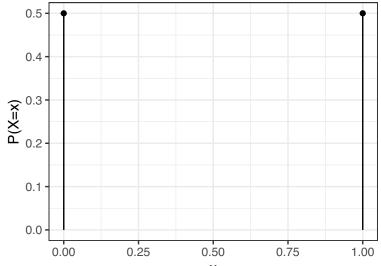
sex of a baby: 1 if female, 0 if male
$$P(X=t) = P(X=t) = P(X=t) = 0$$

disease: 1 if sick, 0 if healthy P(X = 1) = P(X = 0) =

Parameters: p (the probability of 1)

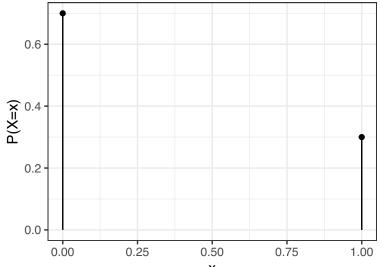
$$P(X = 1) = p$$
 and $P(X = 0) = 1 - p$

Example: p = 0.5



Х

Example: p = 0.3



Х

Suppose we run n independent trials, each trial is "successful" with probability p and "unsuccessful" with probability 1-p (each trial can be represented by a Bernoulli random variable). Binomial random variable represents the number of "successful" trials.

- 5 babies were born in a hospital, number of girls is Binomial
 n = p = X =
- 10 students were admitted to U of T, number of Canadian students is Binomial

$$n = P = X =$$

3 tomatoes were bought in a supermarket, number of rotten tomatoes is Binomial

$$h = P = \frac{\chi = ||}{P(x) = ||}$$

Parameters: p (the probability of success), n (number of trials)

$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \text{ for } x = 0, 1, ..., n$$

Binomial Probability Table

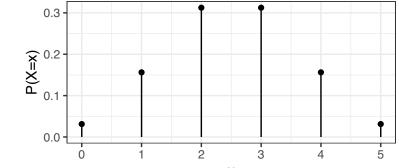
n=Number of trials, k=Number of successes and p=Probability of success

							p					
n	k	0.01	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
2	0	0.9801	0.9025	0.8100	0.7225	0.6400	0.5625	0.4900	0.4225	0.3600	0.3025	0.2500
	1	0.0198	0.0950	0.1800	0.2550	0.3200	0.3750	0.4200	0.4550	0.4800	0.4950	0.5000
	2	0.0001	0.0025	0.0100	0.0225	0.0400	0.0625	0.0900	0.1225	0.1600	0.2025	0.2500
3	0	0.9703	0.8574	0.7290	0.6141	0.5120	0.4219	0.3430	0.2746	0.2160	0.1664	0.1250
	1	0.0294	0.1354	0.2430	0.3251	0.3840	0.4219	0.4410	0.4436	0.4320	0.4084	0.3750
	2	0.0003	0.0071	0.0270	0.0574	0.0960	0.1406	0.1890	0.2389	0.2880	0.3341	0.3750
	3		0.0001	0.0010	0.0034	0.0080	0.0156	0.0270	0.0429	0.0640	0.0911	0.1250
4	0	0.9606	0.8145	0.6561	0.5220	0.4096	0.3164	0.2401	0.1785	0.1296	0.0915	0.0625
	1	0.0388	0.1715	0.2916	0.3685	0.4096	0.4219	0.4116	0.3845	0.3456	0.2995	0.2500
	2	0.0006	0.0135	0.0486	0.0975	0.1536	0.2109	0.2646	0.3105	0.3456	0.3675	0.3750
	3		0.0005	0.0036	0.0115	0.0256	0.0469	0.0756	0.1115	0.1536	0.2005	0.2500
	4			0.0001	0.0005	0.0016	0.0039	0.0081	0.0150	0.0256	0.0410	0.0625
5	0	0.9510	0.7738	0.5905	0.4437	0.3277	0.2373	0.1681	0.1160	0.0778	0.0503	0.0312
	1	0.0480	0.2036	0.3281	0.3915	0.4096	0.3955	0.3602	0.3124	0.2592	0.2059	0.1562
	2	0.0010	0.0214	0.0729	0.1382	0.2048	0.2637	0.3087	0.3364	0.3456	0.3369	0.3125
	3		0.0011	0.0081	0.0244	0.0512	0.0879	0.1323	0.1811	0.2304	0.2757	0.3125
	4			0.0005	0.0022	0.0064	0.0146	0.0284	0.0488	0.0768	0.1128	0.1562
	5				0.0001	0.0003	0.0010	0.0024	0.0053	0.0102	0.0185	0.0312

Example: n = 5, p = 0.5

dbinom(x = 0:5, size = 5, prob = 0.5)

[1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125

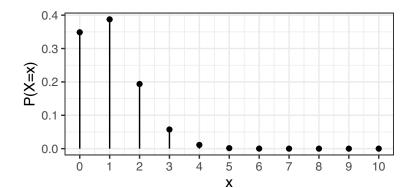


Х

Example: n = 10, p = 0.1

dbinom(x = 0:10, size = 10, prob = 0.1)

[1] 0.3486784401 0.3874204890 0.1937102445 0.0573956280 0.011160261
[6] 0.0014880348 0.0001377810 0.0000087480 0.0000003645 0.000000009
[11] 0.0000000001



Discrete: Binomial vs Bernoulli

Actually, binomial can be represented as a sum of Bernoulli random variables.

$$X = Y_1 + Y_2 + \ldots + Y_n$$

- X is Binomial with n trials and with and probability of success p
- Y₁, Y₂, ..., Y_n are Bernoulli random variables such that P(Y_i = 1) = p

Discrete: expected value

Expected value measures the average value of random variable in long term.

$$E(X) = \sum_{x} x \cdot P(X = x)$$

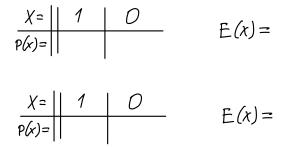
number of heads when tossing two coins

$$E(X) = \sum_{x} x \cdot P(X = x)$$

What is the expectation of the score when rolling a 6-sided die?

$$E(X) = \sum_{x} x \cdot P(X = x)$$

What is the expectation of Bernoulli random variable with p = 0.1? What is the formula for general p?



Expected value vs. sample mean

We have a random variable X

$$X = | 0 | 1 | 2$$
 $P(x) = | | | |$

 We generate a sample of size n using this random variable

 x_1, \ldots, x_n
 $Va/ue | 0 | 1 | 2$

 frequency | | |

What is the relationship between E(X) and $\bar{x} = \frac{x_1 + \dots + x_n}{n}$?

Variance and standard deviation measure the spread of the values of a random variable in long term.

$$Var(X) = \sum_{x} (x - E(X))^2 \cdot P(X = x)$$
$$sd(X) = \sqrt{Var(X)}$$

Alternative formula for variance:

$$Var(X) = \sum_{x} (x - E(X))^2 \cdot P(X = x)$$

What is the variance of the score when rolling a 6-sided die?

$$E(x) =$$

Vor(x) =

What is the variance of Bernoulli random variable with p = 0.1? What is the formula for general p?

Important rules

Expectation

▶ If X is a random variable and a, b are some numbers then

$$E(a+b\cdot X)=a+b\cdot E(X)$$

If Y is also a random variable then

$$E(X+Y)=E(X)+E(Y)$$

Variance

▶ If X is a random variable and a, b are some numbers then

$$Var(a + b \cdot X) = b^2 \cdot Var(X)$$

If Y is also a random variable and it is independent of X then

$$Var(X + Y) = Var(X) + Var(Y)$$

What is the expectation of Binomial random variable with n = 5 and p = 0.1? What is the formula for general n and p?

Variance vs. sample variance

We generate a sample of size n using this random variable x₁,...,x_n

What is the relationship between Var(X) and $s_x^2 = \frac{(x_1 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}$?

What is the variance of Binomial random variable with n = 5 and p = 0.1? What is the formula for general n and p?

If we have 10 random variables X_1, \ldots, X_{10} with $E(X_i) = 10$ and $Var(X_i) = 1$.

What would be the expectation and variance of $X_1 + \ldots + X_{10}$? $(\chi_1 + \dots + \chi_n) = \int V \partial r (\chi_1 + \dots + \chi_n) =$ What would be the expectation and variance of $\frac{\chi_1 + \dots + \chi_{10}}{10}$? $E(x_1 + \ldots + X_{i_{\circ}}) =$ $E\left(\frac{X_1+\ldots+X_{l_0}}{l_0}\right) =$ $E(\bar{x}) =$

TO DO

- 1. Module 2. Probability: Events and Module 2. Probability: Random Variables
- 2. Quiz 4 due Monday (February 6) @ 11:59 PM (EST)
- 3. Practice Problem Set 4