STA220H1: The Practice of Statistics I

Elena Tuzhilina

January 17, 2023

Please turn on your videos :)

Figure 1: [picture source]

Wednesday-Friday: watch modules at https://sta220.utstat.utoronto.ca

Wednesday-Friday: do practice sets, attend TAs office hours if something is not clear

Friday-Monday: do Quiz, attend my office hours on Monday if something is still not clear

Get help: post your questions on Piazza (not my personal email, pls!) or attend office hours

Agenda for today

- Recap: summary statistics, boxplots
- Summarizing one quantitative variable: histogram, standard deviation
- Summarizing relationship between two variables: barplot, scatterplot, correlation

Recap: data

sta220.data

##		student	grade
##	1	Jenny Holder	77
##	2	Tammy Snow	88
##	3	Victoria Hall	90
##	4	Saoirse Spence	86
##	5	Raja Cooper	94
##	6	Nicolas Roberson	68
##	7	Finnley Wright	85
##	8	Nate Mcgrath	93
##	9	Joshua Pollard	82

Measures the central tendency of a data set

sta220.data\$grade

[1] 77 88 90 86 94 68 85 93 82

mean(sta220.data\$grade)

[1] 84.77778

Recap: median

- Also measures the central tendency of a data set
- If we were to sort all of the values, then the median is the value in the middle

sort(sta220.data\$grade)

[1] 68 77 82 85 86 88 90 93 94

median(sta220.data\$grade)

[1] 86

Recap: median

Sometimes we need to use **interpolation** (when *n* even)

sort(sta220.data\$grade[1:8])

[1] 68 77 85 86 88 90 93 94

median(sta220.data\$grade[1:8])

[1] 87

Recap: first and third quartiles

- To find the first quartile we travel quarter (1/4) way through the sorted list
- To find the third quartile we travel three quarters (3/4) way through the sorted list

sort(sta220.data\$grade)

[1] 68 77 82 85 86 88 90 93 94

quantile(sta220.data\$grade)

##	0%	25%	50%	75%	100%
##	68	82	86	90	94

Recap: first and third quartiles

Sometimes we need to use interpolation (when *n*−1 is not divisible by 4)

sort(sta220.data\$grade[1:8])

[1] 68 77 85 86 88 90 93 94

quantile(sta220.data\$grade[1:8])

0% 25% 50% 75% 100% ## 68.00 83.00 87.00 90.75 94.00

Recap: boxplot

quantile(sta220.data\$grade)

##	0%	25%	50%	75%	100%
##	68	82	86	90	94

Recap: boxplot

- ▶ No observations in $[LF, Q_1]$ range \Rightarrow no lower whisker
- ▶ No observations in $[Q_3, UF]$ range \Rightarrow no upper whisker

```
grade = c(40,80,80,80,80,85,86,94,95,100,100,100,100)
quantile(grade)
```

##	0%	25%	50%	75%	100%
##	40	80	86	100	100

Data set: the rainfall level in inches for 69 United States cities

	rainfall
	raiman
Mobile	67.0
Juneau	54.7
Phoenix	7.0
Little Rock	48.5
Los Angeles	14.0
Sacramento	17.2
San Francisco	20.7
Denver	13.0
Hartford	43.4
Wilmington	40.2
Washington	38.9
Jacksonville	54.5
Miami	59.8
Atlanta	48.3
Honolulu	22.9

Histogram is used for visualizing data distibution

- X-axis is split in **bins**, they should be mutually exclusive and exhaustive
- Breaks (cutpoints) are the values that define the beginnings and the ends of the bins
- Counts (frequencies) are numbers of data points in each bin (height of each bar)

> The appearance of histogram depends on the cutpoints

- Mode the peak of the distribution
- Histogram can be unimodal, bimodal, multimodal, uniform

value

- Mode the peak of the distribution
- Histogram can be unimodal, bimodal, multimodal, uniform

Histogram can be symmetric, left-skewed (long left tail), right-skewed (long right tail)

Histogram can be symmetric, left-skewed (long left tail), right-skewed (long right tail)

Exercise

For a sample 11,1,2,6,6,6 plot the histogram with cutpoints 0,3,10,15. How many bars are there? How tall is each bar?

Summary statistics: standard deviation

There are several ways to measure the spread of the data

$$IQR = Q_3 - Q_1$$

$$range = x_{(n)} - x_{(1)}$$

IQR(precip.data\$rainfall)

[1] 13.7

max(precip.data\$rainfall) - min(precip.data\$rainfall)

[1] 60

Summary statistics: standard deviation

variance
$$= \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = s_x^2$$

standard deviation =
$$\sqrt{variance} = s_x$$

var(precip.data\$rainfall)

[1] 190.5252

sd(precip.data\$rainfall)

[1] 13.80309

Exercise

Compute standard deviation of the following values:

3, 10, 5, 6, 10, 8?

vec = c(3, 10, 5, 6, 10, 8)summary(vec)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 3.00 5.25 7.00 7.00 9.50 10.00 Summary statistics: standard deviation

There is an **empirical rule** for **symmetric**, **unimodal**, **bell-shaped** distributions.

Summary statistics: standard deviation

- 68% of the data lies in $[\bar{x} s_x, \bar{x} + s_x]$
- ▶ 95% of the data lies in $[\bar{x} 2 \cdot s_x, \bar{x} + 2 \cdot s_x]$
- ▶ 99.7% of the data lies in $[\bar{x} 3 \cdot s_x, \bar{x} + 3 \cdot s_x]$

Figure 2: [picture source]

How bad is my midterm score of 68?

Option 1: use a histogram to compare your score to other students.

summary(grades)

How bad is my midterm score of 68?

Option 2: quantify your relative performance using z-score.

- z-score is an adjustment of a data value to get its position in a data set
- It tells you how many standard deviations a data value is away from its mean

$$z=\frac{x-\bar{x}}{s_x}$$

(mygrade - mean(grades))/sd(grades)

[1] -1.126134

Data summary: one quantitative variable

- Compute numerical summary (summary statistics) mean, minimum, maximum, range, median, quartiles, IQR, standard deviation
- Summarize using plots histogram and boxplot

Data summary: one categorical variable

- Numerical summary is very limited frequencies, relative frequencies
- Summarize using **plots** barplot, piechart

Data summary: one categorical variable

Data set: an experiment was conducted to measure effectiveness of various feed supplements on the growth rate of 71 chickens

weight	feed
179	soybean
160	soybean
136	soybean
227	soybean
217	soybean
168	soybean
108	soybean
124	soybean
143	soybean
140	soybean
309	linseed
229	linseed
181	linseed
141	linseed
260	linseed

Numerical summary: distribution

- Distribution describes how data are divided between different possible values
- Frequencies measure how many observations are in each category

```
tab = table(chick.data$feed)
tab
```

##

##	casein	linseed	meatmeal	soybean	${\tt sunflower}$
##	12	12	11	24	12

Plots: barplot

In a sense, this is an analogue of a histogram

Numerical summary: distribution

 Distribution describes how data are divided between different possible values

 Relative frequencies measure proportion of observations in each category

prop.table(tab)

##

casein linseed meatmeal soybean sunflower
0.1690141 0.1690141 0.1549296 0.3380282 0.1690141

Plots: stacked barplot

All proportions add up to one!

Plots: piechart

Size of each slice illustrates the proportion of a category

Exercise

You get the distribution (frequencies) of pets in the building you live. The information was collected among n students. Can you estimate n?

cat dog fish hamster iguana none ## 15 12 1 4 3 15 Data summary: quantitative vs quantitative variables

Summary statistics - correlation

Use plots - scatterlplot

Data summary: quantitative vs quantitative variables

Data set: 1078 measurements of a father's height and his son's height.

fheight	sheight
65.04851	59.77827
63.25094	63.21404
64.95532	63.34242
65.75250	62.79238
61.13723	64.28113
63.02254	64.24221
65.37053	64.08231
64.72398	63.99574
66.06509	64.61338
66.96738	63.97944
59.00800	65.24451
62.93203	65.35102
63.67063	65.67992
64.07386	65.43664
64.68851	65.29391

Plots: scatterplot

Plots: scatterplot

 \blacktriangleright There seems to be a positive relationship: taller father \Rightarrow taller son

Summary statistics: covariance

Can we quantify the trend?

- n will denote the number of observations
- ▶ $x_1, x_2, ..., x_n$ will denote the observations for the first variable
- ▶ y₁, y₂, ..., y_n will denote the observations for the second variable

$$covariance = rac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = cov_{xy}$$

Summary statistics: covariance

- Positive covariance ⇒ the variables tend to both increase together
- ► Negative covariance ⇒ one variable tends to increase when the other decreases
- But it depends on the scale of variables!

cov(father.son.data\$sheight, father.son.data\$fheight)

[1] 3.873333

Summary statistics: correlation

- Correlation refers to the scaled form of covariance
- Correlation value is between -1 and 1

correlation =
$$\frac{cov_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}} = r_{xy}$$

Summary statistics: correlation

Can we quantify the trend?

If there is a perfect linear relationship, e.g. y_i = a ⋅ x_i + b, then correlation is 1 (if a > 0) or −1 (if a < 0)</p>

cor(father.son.data\$sheight, father.son.data\$fheight)

[1] 0.5013383

Exercise

What is the correlation (close to 1,-1 or 0)?

Data summary: categorical vs quantitative variables

- Compute summary statistics within each category
- Use plots boxplot

Summary statistics

You can compute summary statistics, e.g. mean, median and sd, within each category

feed	min	max	mean	median	Q1	Q3	sd
casein	216	216	323.5833	342	277.25	277.25	64.43384
linseed	141	141	218.7500	221	178.00	178.00	52.23570
meatmeal	153	153	276.9091	263	249.50	249.50	64.90062
soybean	108	108	210.5000	208	159.50	159.50	64.23124
sunflower	226	226	328.9167	328	312.75	312.75	48.83638

Plots: boxplot

- Use x-axis for different categories
- This method is good, but sometimes it is really hard to say if the difference is significant

Data summary: categorical vs categorical variables

- Numerical summary is very limited frequencies and relative frequencies
- Use plots barplot

Data summary: categorical vs categorical variables

Data set: provides information on the fate of 891 passengers on the fatal maiden voyage of the ocean liner "Titanic", summarized according to economic status (class), sex, age and survival.

assengerld	Sex	Age	Class	Survived
1	male	22	3	No
2	female	38	1	Yes
3	female	26	3	Yes
4	female	35	1	Yes
5	male	35	3	No
6	male	NA	3	No
7	male	54	1	No
8	male	2	3	No
9	female	27	3	Yes
10	female	14	2	Yes
11	female	4	3	Yes
12	female	58	1	Yes
13	male	20	3	No
14	male	39	3	No
15	female	14	3	No

Numerical summary: joint distribution

Is it true that rich people (e.g. 1st class passengers) survived more often that poor people (e.g. 3rd class passengers)?

table(titanic.data\$Class)

1 2 3 ## 216 184 491

table(titanic.data\$Survived)

No Yes

549 342

Numerical summary: joint distribution

 Joint distribution is the frequency/relative frequency of observations for a combination of two variables

```
tab = table(titanic.data$Class, titanic.data$Survived)
tab
```

##		No	Ies		
##	1	80	136		
##	2	97	87		
##	3	372	119		
ptab ptab	=	prop	o.table	(tab)	
##					
##			No		Yes
##	1	0.08	3978676	0.15263	3749
##	2	0.10	886644	0.09764	1310
##	3	0.41	L750842	0.13355	5780

##

Plots: barplot

• There are many 3rd class passengers that did not survive

But it is hard to compare as there were many people who did not survive

Numerical summary: marginal distribution

 Marginal distribution is the frequency/relative frequency of only one variable

addmargins(tab)

##				
##		No	Yes	Sum
##	1	80	136	216
##	2	97	87	184
##	3	372	119	491
##	Sum	549	342	891

Numerical summary: conditional distribution

- Conditional distribution is the distribution of one variable within a fixed value of a second value
- Comparing conditional distributions for each cetegory can tell if there is any relationship between two variables

##				
##		No	Yes	
##	1	80	136	
##	2	97	87	
##	3	372	119	
##	\mathtt{Sum}	549	342	
##				
##			No	Yes
##	1	0.14	157195	0.3976608
##	2	0.17	766849	0.2543860
## ##	2 3	0.17	766849 775956	0.2543860
## ## ##	2 3 Sum	0.17	766849 775956 000000	0.2543860 0.3479532 1.0000000

Plots: stacked barplot

Two variables are independent if conditional distribution of one variable is the same for all values of the other variable

Find conditional distribution of Sex and Survived variables. Do you think there is any relationship?

##			
##		No	Yes
##	female	81	233
##	male	468	109

TO DO

- 1. Module 1. Summarizing Data: One variable and Module 1. Summarizing Data: Relationships Between Variables
- 2. Quiz 2 due Monday (January 23) @ 11:59 PM (EST)
- 3. Practice Problem Set 2