STA220H1: The Practice of Statistics I

Elena Tuzhilina

January 17, 2023

Please turn on your videos :)

Figure 1: [picture source]

Learning strategy

Wednesday-Friday: watch modules at https://sta220.utstat.utoronto.ca

Wednesday-Friday: do practice sets, attend TAs office hours if something is not clear

Friday-Monday: do Quiz, attend my office hours on Monday if something is still not clear

Get help: post your questions on Piazza (not my personal email, pls!) or attend office hours

Agenda for today

- ► Recap: summary statistics, boxplots
- Summarizing one quantitative variable: histogram, standard deviation
- Summarizing relationship between two variables: barplot, scatterplot, correlation

Recap: data

```
Variable
sta220.data
##
             student grade
## 1
        Jenny Holder
                                   observations
## 2
          Tammy Snow
                       88 ____
       Victoria Hall
                       ## 3
## 4
      Saoirse Spence
                       86
                       94
## 5
         Raja Cooper
    Nicolas Roberson
                       68
## 7
      Finnley Wright
                       85
## 8
        Nate Mcgrath
                       93
      Joshua Pollard
## 9
                       82
```

Recap: mean

Measures the central tendency of a data set

sta220.data\$grade

$$X_1 \quad X_2 \quad X_3 \quad X_4 \quad h = \#obS$$

[1] 77 88 90 86 94 68 85 93 82

 $X_1 \quad X_2 \quad X_4 \quad h = \#obS$

mean(sta220.data\$grade)

[1] 84.77778

 $Mean = \frac{X_1 + X_2 + ... + X_5}{h} = \frac{h}{h} \quad X_1 \quad h$

Recap: median

- ▶ Also measures the **central tendency** of a data set
- ▶ If we were to sort all of the values, then the median is the value in the middle

[1] 86

Recap: median

ightharpoonup Sometimes we need to use **interpolation** (when n even)

```
## [1] 68 77 85 86 88 90 93 94 
median(sta220.data$grade[1:8])
```

[1] 87

Recap: first and third quartiles

- ▶ To find the **first quartile** we travel quarter (1/4) way through the sorted list
- ➤ To find the **third quartile** we travel three quarters (3/4) way through the sorted list

```
## [1] 68 77 82 85 86 88 90 93 94

quantile(sta220.data$grade)

## 0% 25% 50% 75% 100%

## 68 82 86 90 94
```

Recap: first and third quartiles

▶ Sometimes we need to use **interpolation** (when n-1 is not divisible by 4)

Recap: boxplot

quantile(sta220.data\$grade) IQR = 90-82 = 8 Q1-1.5.IQR = 82-1.5.8 ## 0% 25% 50% 75% 100% 68 82 86 90 ## 94 grade $LF \leq W_1$ $W_2 \leq UF$

Recap: boxplot

- ▶ No observations in $[LF, Q_1]$ range \Rightarrow no lower whisker
- No observations in $[Q_3, UF]$ range \Rightarrow no upper whisker

Data set: the rainfall level in inches for 69 United States cities

	rainfall
Mobile	67.0
Juneau	54.7
Phoenix	7.0
Little Rock	48.5
Los Angeles	14.0
Sacramento	17.2
San Francisco	20.7
Denver	13.0
Hartford	43.4
Wilmington	40.2
Washington	38.9
Jacksonville	54.5
Miami	59.8
Atlanta	48.3
Honolulu	22.9

- X-axis is split in bins, they should be mutually exclusive and exhaustive
- Breaks (cutpoints) are the values that define the beginnings and the ends of the bins
- Counts (frequencies) are numbers of data points in each bin

► The appearance of histogram depends on the cutpoints

- ▶ Mode the peak of the distribution
- ► Histogram can be unimodal, bimodal, multimodal, uniform

- ▶ Mode the peak of the distribution
- ► Histogram can be unimodal, bimodal, multimodal, uniform

Histogram can be symmetric, left-skewed (long left tail),
 right-skewed (long right tail)

Histogram can be symmetric, left-skewed (long left tail),
 right-skewed (long right tail)

Exercise

For a sample 11,1,2,6,6,6 plot the histogram with cutpoints -1, 0,3,10,15. How many bars are there? How tall is each bar?

Summary statistics: standard deviation

There are several ways to measure the **spread of the data**

$$IQR = Q_3 - Q_1$$
wax
win

 $range = x_{(n)} - x_{(1)}$

IQR(precip.data\$rainfall)

max(precip.data\$rainfall) - min(precip.data\$rainfall)

Summary statistics: standard_deviation

$$\frac{\overline{X}}{X_1} \frac{X_2}{X_2} \frac{X_4}{X_4} \frac{X_5}{X_5} \frac{\overline{X}}{N} = \frac{\overline{X}}{N}$$

$$variance = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = s_x^2 \qquad \sum (x_i - \overline{x}) = 0$$

standard deviation =
$$\sqrt{variance} = s_x$$

```
var(precip.data$rainfall)
```

[1] 190.5252

sd(precip.data\$rainfall)

[1] 13.80309

Exercise

variance =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = s_x^2$$

Compute standard deviation of the following values:

Min. 1st Qu. Median Mean 3rd Qu. Max.
$$n = 6$$
3.00 5.25 7.00 (7.00) 9.50 10.00

1) $x_1 - \overline{x}$ $(x_1 - \overline{x})^2$ $(x_1 - \overline{x})^2$ $(x_1 - \overline{x})^2$ $(x_1 - \overline{x})^4$ $(x_1$

Summary statistics: standard deviation

There is an **empirical rule** for **symmetric, unimodal, bell-shaped** distributions.

Summary statistics: standard deviation

mean-3s

mean-2s

- ▶ 68% of the data lies in $[\bar{x} s_x, \bar{x} + s_x]$
- ▶ 95% of the data lies in $[\bar{x} 2 \cdot s_x, \bar{x} + 2 \cdot s_x]$

Figure 2: [picture source]

mean

mean+1s

mean+2s

How bad is my midterm score of 68?

Option 1: use a histogram to compare your score to other students.

How bad is my midterm score of 68?

Option 2: quantify your relative performance using z-score.

- z-score is an adjustment of a data value to get its position in a data set
- ► It tells you how many standard deviations a data value is away from its mean

$$z = \frac{\sqrt[6]{x} - \sqrt{x}}{\sqrt[6]{x}}$$

(mygrade - mean(grades))/sd(grades)

[1] -1.126134

Data summary: one quantitative variable

- Compute numerical summary (summary statistics) mean, minimum, maximum, range, median, quartiles, IQR, standard deviation
- Summarize using plots histogram and boxplot

Data summary: one categorical variable

- ► **Numerical summary** is very limited frequencies, relative frequencies
- ► Summarize using **plots** barplot, piechart

Data summary: one categorical variable

Data set: an experiment was conducted to measure effectiveness of various feed supplements on the growth rate of 71 chickens

weight	feed
179	soybean
160	soybean
136	soybean
227	soybean
217	soybean
168	soybean
108	soybean
124	soybean
143	soybean
140	soybean
309	linseed
229	linseed
181	linseed
141	linseed
260	linseed

Numerical summary: distribution

- Distribution describes how data are divided between different possible values
- Frequencies measure how many observations are in each category

```
##
## casein linseed meatmeal soybean sunflower
##
## 12 12 11 24 12 41 12 41
```

Plots: barplot

In a sense, this is an analogue of a histogram

Numerical summary: distribution

prop.table(tab)

- Distribution describes how data are divided between different possible values
- ► Relative frequencies measure proportion of observations in each category

```
##
## casein linseed meatmeal soybean sunflower
## 0.1690141<sub>f</sub>0.1690141<sub>f</sub>0.1549296<sub>f</sub>0.3380282<sub>f</sub>0.1690141 = /
```

Plots: stacked barplot

► All proportions add up to one!

Plots: piechart

▶ Size of each slice illustrates the proportion of a category

Exercise

You get the distribution (frequencies) of pets in the building you live. The information was collected among n students. Can you estimate n?

Data summary: quantitative vs quantitative variables

- ► Summary statistics correlation
- ► Use **plots** scatterlplot

Data summary: quantitative vs quantitative variables

Data set: 1078 measurements of a father's height and his son's height.

fheight	sheight
(9, -9) 55.04851	9 59.77827
63.25094	• 63.21404
² 9,64.95532	63.34242
³ 65.75250	62.79238
61.13723	64.28113
63.02254	64.24221
65.37053	64.08231
64.72398	63.99574
66.06509	64.61338
66.96738	63.97944
59.00800	65.24451
62.93203	65.35102
63.67063	65.67992
64.07386	65.43664
64.68851	65.29391

Plots: scatterplot

► There seems to be a positive relationship: taller father ⇒ taller son

Summary statistics: covariance

Can we quantify the trend?

- n will denote the number of observations
- \triangleright $x_1, x_2, ..., x_n$ will denote the observations for the first variable
- $y_1, y_2, ..., y_n$ will denote the observations for the second variable

covariance =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = cov_{xy}$$

$$X_i \quad \text{meters} \longrightarrow X_i \cdot 100 \quad (cm)$$

$$100 \cdot cov_{xy} \cdot 100 \cdot (cm)$$

Summary statistics: covariance

- Positive covariance ⇒ the variables tend to both increase together
- Negative covariance ⇒ one variable tends to increase when the other decreases
- But it depends on the scale of variables!

```
cov(father.son.data$sheight, father.son.data$fheight)
```

```
## [1] 3.873333
```

Summary statistics: correlation

- ▶ Correlation refers to the scaled form of covariance
- ► Correlation value is between -1 and 1

$$correlation = \frac{cov_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}} = r_{xy}$$

Summary statistics: correlation

Can we quantify the trend?

If there is a perfect linear relationship e.g. $y_i = a \cdot x_i + b$, then correlation is 1 (if a > 0) or -1 (if a < 0)

cor(father.son.data\$sheight, father.son.data\$fheight)

Exercise

What is the correlation (close to 1,-1 or 0)?

Data summary: categorical vs quantitative variables

- ► Compute **summary statistics** within each category
- ► Use **plots** boxplot

Summary statistics

➤ You can compute summary statistics, e.g. mean, median and sd, within each category

feed	min	max	mean	median	Q1	Q3	sd
casein	216	216	323.5833	342	277.25	\ 277.2 5	64.43384
linseed	141	141	218.7500	221	178.00	178,00	52.23570
meatmeal	153	153	276.9091	263	249.50	249.50	64.90062
soybean	108	108	210.5000	208	159.50	159.50	64.23124
sunflower	226	226	328.9167	328	312.75	312.75	48.83638

Plots: boxplot

- Use x-axis for different categories
- ► This method is good, but sometimes it is really hard to say if the difference is significant

Data summary: categorical vs categorical variables

- ► **Numerical summary** is very limited frequencies and relative frequencies
- ► Use **plots** barplot

Data summary: categorical vs categorical variables

Data set: provides information on the fate of 891 passengers on the fatal maiden voyage of the ocean liner "Titanic", summarized according to economic status (class), sex, age and survival.

Passengerld	Sex	Age	Class	Survived
1	male	22	3	No
2	female	38	1	Yes
3	female	26	3	Yes
4	female	35	1	Yes
5	male	35	3	No
6	male	NA	3	No
7	male	54	1	No
8	male	2	3	No
9	female	27	3	Yes
10	female	14	2	Yes
11	female	4	3	Yes
12	female	58	1	Yes
13	male	20	3	No
14	male	39	3	No
15	female	14	3	No

Numerical summary: joint distribution

Is it true that rich people (e.g. 1st class passengers) survived more often that poor people (e.g. 3rd class passengers)?

```
table(titanic.data$Class)
##
## 216 184 491
table(titanic.data$Survived)
##
    No Yes
## 549 342
```

Numerical summary: joint distribution

▶ **Joint distribution** is the frequency/relative frequency of observations for a combination of two variables

```
tab = table(titanic.data$Class, titanic.data$Survived)
       Survived
tab
##
##
        No Yes
##
##
##
ptab = prop.table(tab)
ptab
##
##
                          Yes
##
       0.08978676 0.15263749
     2 0.10886644 0.09764310
##
##
     3 0.41750842 0.13355780
```

Plots: barplot

- ▶ There are many 3rd class passengers that did not survive
- But it is hard to compare as there were many people who did not survive

Numerical summary: marginal distribution

Marginal distribution is the frequency/relative frequency of only one variable

```
addmargins(tab)
```

Numerical summary: conditional distribution

- ► Conditional distribution is the distribution of one variable within a fixed value of a second value
- Comparing conditional distributions for each cetegory can tell if there is any relationship between two variables

```
No Yes
##
          80 136
##
     1
##
          97 87
         372 119
##
     3
     Sum 549 342
##
##
##
                Nο
                          Yes
##
        0.1457195 0.3976608
##
     2 0.1766849 0.2543860
##
     3
         0.6775956 0.3479532
##
     Sum 1.0000000 1.0000000
```

##

Plots: stacked barplot

► Two variables are **independent** if conditional distribution of one variable is the same for all values of the other variable

Exersice

Find conditional distribution of Sex and Survived variables. Do you think there is any relationship?

```
## No Yes
## female 81 233
## male 468 109
```

TO DO

- Module 1. Summarizing Data: One variable and Module 1.
 Summarizing Data: Relationships Between Variables
- 2. Quiz 2 due Monday (January 23) @ 11:59 PM (EST)
- 3. Practice Problem Set 2