STA220H1: The Practice of Statistics I

Elena Tuzhilina

April 4, 2023

Please turn on your videos :)

Announcements

- 1. We have one more Quiz left.
- 2. The Midterm 2 regrade requests are due tonight.
- 3. We will have additional office hours:

Elena: Monday (April 10 and 17) at 11 am - 12 pm

- **Alice**: Tuesday (April 18) at 1 2 pm
- **Vicky**: Tuesday (April 18) at 7 8 pm

Ichiro: Wednesday (April 19) at 10 - 11 am

Agenda for today

- \blacktriangleright Recap: statistical testing for two samples
- ▶ Testing for two categorical variables
- ▶ Linear regression

Statistical testing

One sample:

- ▶ z-test for proportion
- \blacktriangleright t-test for population mean

Two matching samples:

- ▶ paired t-test
- ▶ signed test

Two non-matching samples:

- \blacktriangleright z-test for proportions
- \blacktriangleright t-test for two population means

T-test with matching samples compares two samples x_1, \ldots, x_n and y_1, \ldots, y_n with matching observations.

- \blacktriangleright Sample sizes are equal
- ▶ Samples are not independent

Paired t-test: works for matching pairs.

 \triangleright Create a sample that shows the difference in measurements

$$
d_1, \ldots, d_n
$$
 where $d_i = x_i - y_i$

▶ Perform statistical test on differences testing H_0 : $\mu_d = 0$ vs H_a : $\mu_d \neq 0$

Assumptions: requires the average difference \overline{d} to come from Normal distribution

- \blacktriangleright d_i came from normal distribution
- \blacktriangleright n is large (CLT)

Signed test: an alternative to paired t-test when assumptions are violated.

- \triangleright Compute n_{obs} the number of positive differences
- \triangleright Perform statistical test on the probability to get a positive difference H_0 : $p = 0.5$ vs H_0 : $p \neq 0.5$
- ▶ Use null distribution N ∼ Bernoulli(n*,* 0*.*5) to compute p-value $= P(N \ge n_{obs}) + P(N \le n - n_{obs})$

Assumptions:

- \blacktriangleright No assumptions
- \blacktriangleright Works for small *n*

T-test with non-matching samples compares two samples x_1, \ldots, x_n and y_1, \ldots, y_m with non-matching observations.

- ▶ Sample sizes can be different
- ▶ Samples are independent

Proportions: compares the probability of "successful" outcomes in x_1, \ldots, x_n and y_1, \ldots, y_m .

 \blacktriangleright Perform statistical test on the probabilities H_0 : $p = q$ vs. H_a : $p \neq q$

▶ "Pool" two samples to approximate $p, q \approx \frac{n\bar{x}+m\bar{y}}{n+m}$ $n+m$

 \blacktriangleright Use test statistic

$$
z_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{n\bar{x} + m\bar{y}}{n+m} \left(1 - \frac{n\bar{x} + m\bar{y}}{n+m}\right) \left(\frac{1}{n} + \frac{1}{m}\right)}}
$$

to find p-value

Assumptions: requires the difference in sample means $\bar{x} - \bar{y}$ to come from Normal distribution

 \blacktriangleright x_i and y_i came from normal distribution

► Both
$$
n > 30
$$
 and $m > 30$ (CLT)

Means: compares the population means of x_1, \ldots, x_n and

 y_1, \ldots, y_m .

- ▶ Perform statistical test on the probabilities H_0 : $\mu_x = \mu_y$ vs. $H_a: \mu_x \neq \mu_y$
- ▶ Use ugly formula to compute degrees-of-freedom

$$
df = \frac{\left(s_x^2/n + s_y^2/m\right)^2}{\frac{\left(s_x^2/n\right)^2}{n-1} + \frac{\left(s_y^2/m\right)^2}{m-1}}
$$

▶ Use test statistic

$$
t_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}}
$$

and df to compute p-value

Assumptions: requires the difference in sample means $\bar{x} - \bar{y}$ to come from Normal distribution

- \blacktriangleright x_i and y_i came from normal distribution
- ▶ Both $n > 30$ and $m > 30$ (CLT)

Means: compares the population means of x_1, \ldots, x_n and y_1, \ldots, y_m .

- ▶ Perform statistical test on the probabilities H_0 : $\mu_x = \mu_y$ vs. $H_a: \mu_x \neq \mu_y$
- \triangleright Use "pooling" to approximate variance by

$$
s^2 \approx \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}
$$

▶ Use test statistic

$$
t_{obs}=\frac{\bar{x}-\bar{y}}{\sqrt{s^2\left(\frac{1}{n}+\frac{1}{m}\right)}}
$$

and $df = n + m - 2$ to compute p-value

Additional assumption: population variances are equal $\sigma_x = \sigma_y$

Two categorical variables

Titanic data set provides information on the fate of 891 passengers on the fatal maiden voyage of the ocean liner "Titanic", summarized according to economic status (class), sex, age and survival.

Two categorical variables

Is it true that women survived more often that men?

- ▶ **Marginal distribution** is the distribution of only one variable
- ▶ **Conditional distribution** is the distribution of one variable within a fixed value of a second value

Two categorical variables

Two variables are **independent** if conditional distribution of one variable is the same for all values of the other variable

Step 1: state your **null** hypothesis and the **alternative** hypothesis. H_0 : sex and survived variables are independent H_a : sex and survived variables are dependent

How would the table look like if null is true?

If sex and survived variables are independent then

$$
P(no \cap female) = P(no) \cdot P(female)
$$

$$
P(no \cap male) = P(no) \cdot P(male)
$$

$$
P(yes \cap female) = P(yes) \cdot P(female)
$$

$$
P(yes \cap male) = P(yes) \cdot P(male)
$$

If sex and survived variables are independent then

observed counts = **expected counts**

$$
\#no \text{ and female} = \frac{\#no \cdot \#female}{n}
$$
\n
$$
\#no \text{ and male} = \frac{\#no \cdot \#male}{n}
$$
\n
$$
\#yes \text{ and female} = \frac{\#yes \cdot \#female}{n}
$$
\n
$$
\#yes \text{ and male} = \frac{\#yes \cdot \#male}{n}
$$

Step 2: summarize the data into a **test statistic**.

$$
x_{obs}^2 = \sum \frac{(observed - expected)^2}{expected}
$$

Note that under the null, the test statistic $X^2 \sim \chi^2_{(r-1)(c-1)}.$

Step 3: compute p -value $= P(X^2 > x_{obs}^2)$ using the chi-square distribution table with $df = (2 - 1)(2 - 1)$.

Step 4: draw the conclusion.

chisq.test($x =$ sex, $y =$ survived, correct = FALSE)

```
##
## Pearson's Chi-squared test
##
## data: sex and survived
## X-squared = 263.05, df = 1, p-value < 2.2e-16
```
Exercise

Perform statistical testing to check if there is association between Class and Survived variables.

chisq.test($x = class$, $y = survival$, correct = FALSE)

```
##
## Pearson's Chi-squared test
##
## data: class and survived
## X-squared = 102.89, df = 2, p-value < 2.2e-16
```
Two quantitative variables

In Pearson's data set there are 1078 measurements of a father's height and his son's height.

Two quantitative variables

To quantify the relationship between quantitative $x_1, ..., x_n$ and y1*, ...,* yⁿ we introduced **correlation coefficient.**

$$
\text{correlation} = \frac{\text{cov}_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (y_i - \bar{y})^2}} = r_{xy}
$$

- ▶ Correlation value is between -1 and 1
- ▶ Positive correlation \Rightarrow the variables tend to both increase together
- ▶ Negative correlation \Rightarrow one variable tends to increase when the other decreases

cor(fheight, sheight)

[1] 0.5013383

Two quantitative variables

The "trend" is positive!

Goal: find the line that approximates the best the relationship between two variables.

Which line is better?

Line equation

Any line can be written as $y = ax + b$.

- \blacktriangleright a is **slope**, the change in y when x changes by 1 unit
- \triangleright b is **intercept**, the value of y when $x = 0$

Given a point (x_i, y_i)

- ▶ vertical projection of the point on the line is $\hat{y}_i = ax_i + b$
- **► residual** $e_i = y_i \hat{y}_i$ measures how well the line approximates the point

Given a set of points $(x_1, y_1), \ldots, (x_n, y_n)$

Exercise residual sum of squares $RSS = \sum_{i=1}^{n} e_i^2$, measures how well the line approximates the data

Note that for different a and b we will get different RSS

$$
RSS(a, b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2
$$

so we want to find a and b that minimize RSS.

$$
a = \frac{cov_{xy}}{s_x^2} = \frac{s_y}{s_x}r_{xy}
$$

$$
b = \bar{y} - a\bar{x}
$$

Exercise

Find the regression line for Fisher's data set.

c(mean(fheight), sd(fheight))

[1] 67.687097 2.744868

c(mean(sheight), sd(sheight))

[1] 68.684070 2.814702

cor(fheight, sheight)

[1] 0.5013383

Exercise

lm(sheight~fheight)

##

- ## Call:
- ## $lm(formula = sheight ~fheight)$

##

- ## Coefficients:
- ## (Intercept) fheight
- ## 33.8866 0.5141

 \blacktriangleright The line passes through (\bar{x}, \bar{y})

It is important which variable is x which is y .

In line equation $y = a \cdot x + b$

- ▶ y is called **response variable**
- ▶ x is called **explanatory variable**

 $son = 0.51 \cdot father + 33.89$

Regression line is often used for prediction, \hat{v} **is often called predicted value.**

What would be the son's height if father was 70 inch exactly?

 $son = 0.51 \cdot father + 33.89$

Regression coefficients have interpretation

- \triangleright a is the average change in y when x changes by 1 unit
- \triangleright b is the average value of y when $x = 0$ (if zero values make sense)

$$
\textit{son} = 0.51 \cdot \textit{father} + 33.89
$$

Regression works great when the "trend" is linear.

The **residual plot** will show whether a straight line is a good model for the data.

How to measure if line approximation is accurate?

Residual sum of squares $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ measures how well the regression line approximates the data. BUT RSS dependents on the data scale.

Total sum of squares $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$ measures variation in the response variable.

Explained sum of squares $ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$ measures variation in the response variable that can be explained by the regression line.

 $TSS = ESS + RSS$

x

Coefficient of determination measures the **proportion** of variation in response variable explained by the regression line.

$$
R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}
$$

 \blacktriangleright $R^2 = 0$ none of the variation is explained (very bad fit)

 \blacktriangleright $R^2 = 1$ all of the variation is explained (perfect fit)

Cool fact: coefficient of determination is equal to the squared correlation between the response and explanatory variable (and prediction)

$$
R^2 = \text{cor}^2(x, y) = \text{cor}^2(\hat{y}, y)
$$

Exercise

Given RSS

sum((lm(sheight~fheight)\$residuals)^2)

[1] 6388.001

standard deviation of sons height

sd(sheight)

[1] 2.814702

and $n = 1078$, find the coefficient of determination.

TO DO

- 1. [Module 11. Simple Linear Regression](https://sta220.utstat.utoronto.ca/modules/simple-linear-regression/)
- 2. Quiz 12 due Monday (April 10) @ 11:59 PM (EST)
- 3. Practice Problem Set 12