## STA220H1: The Practice of Statistics I

Elena Tuzhilina

April 4, 2023

## Please turn on your videos :)



#### Announcements

- 1. We have one more Quiz left.
- 2. The Midterm 2 regrade requests are due tonight.
- 3. We will have additional office hours:

Elena: Monday (April 10 and 17) at 11 am - 12 pm

Alice: Tuesday (April 18) at 1 - 2 pm

Vicky: Tuesday (April 18) at 7 - 8 pm

Ichiro: Wednesday (April 19) at 10 - 11 am

## Agenda for today

- Recap: statistical testing for two samples
- ► Testing for two categorical variables
- Linear regression

## Statistical testing

## One sample: $X_1 - X_n$

- ▶ z-test for proportion  $\mathcal{H}_{6}: \mathcal{P} = \mathcal{P}_{9}$
- ► t-test for population mean  $\mathcal{H}_o: \mathcal{H} = \mathcal{H}_o$

Two matching samples:  $X_1 \dots X_n = Y_1 \dots Y_n$ 

- ▶ paired t-test  $H_0: Md = 0$
- ▶ signed test  $H_o: P = 0.5$

Two non-matching samples:  $X_1 - X_n = Y_1 - Y_n$ 

- $\triangleright$  z-test for proportions  $\mathcal{H}_{\bullet}: P = 9$
- ▶ t-test for two population means  $H_o: M_x = M_y$

**T-test with matching samples** compares two samples  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_n$  with matching observations.

- ► Sample sizes are equal
- Samples are not independent

Paired t-test: works for matching pairs.

▶ Create a sample that shows the difference in measurements

$$d_1, \ldots, d_n$$
 where  $d_i = x_i - y_i$ 

Perform statistical test on differences testing  $H_0: \mu_d = 0$  vs  $H_a: \mu_d \neq 0$ 

**Assumptions:** requires the average difference  $\bar{d}$  to come from Normal distribution

- $ightharpoonup d_i$  came from normal distribution
- n is large (CLT)

**Signed test**: an alternative to paired t-test when assumptions are violated.

- $\triangleright$  Compute  $n_{obs}$  the number of positive differences
- Perform statistical test on the probability to get a positive difference  $H_0$  (p=0.5) vs  $H_0$ :  $p \neq 0.5$  (p>0.5) Use null distribution  $N \sim Bernoulli(n,0.5)$  to compute p-value
  - Bin (n, 0.5)

$$= P(N \ge n_{obs}) + P(N \le n - n_{obs})$$

## **Assumptions:**

No assumptions

No assumptions

Works for small 
$$n$$

Ho:  $p = 0.5$  Ha:  $p < 0.5$   $P(N \le 3)$ 

**T-test with non-matching samples** compares two samples  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_m$  with non-matching observations.

- Sample sizes can be different n ≠ M
- ► Samples are independent



**Proportions**: compares the probability of "successful" outcomes in

$$x_1, \ldots, x_n$$
 and  $y_1, \ldots, y_m$ .

- Perform statistical test on the probabilities  $H_0: p = q$  vs.  $H_a: p \neq q$
- ▶ "Pool" two samples to approximate  $p, q \approx \frac{n\bar{x} + m\bar{y}}{n+m}$
- ► Use test statistic

$$z_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{n\bar{x} + m\bar{y}}{n+m} \left(1 - \frac{n\bar{x} + m\bar{y}}{n+m}\right)\left(\frac{1}{n} + \frac{1}{m}\right)}}$$
 to find p-value 
$$p(1-p) \qquad p(1-q)$$

**Assumptions:** requires the difference in sample means  $\bar{x} - \bar{y}$  to come from Normal distribution

- $\triangleright$   $x_i$  and  $y_i$  came from normal distribution
- ▶ Both n > 30 and m > 30 (CLT)

**Means**: compares the population means of  $x_1, \ldots, x_n$  and  $y_1,\ldots,y_m$ .

- Perform statistical test on the probabilities  $H_0: \mu_x = \mu_y$
- vs.  $H_a: \mu_x \neq \mu_y$ Use ugly formula to compute degrees-of-freedom

Use ugly formula to compute degrees-of-freedom 
$$\left(s_x^2/n + s_v^2/m\right)^2$$

$$df = \frac{\left(s_{x}^{2}/n + s_{y}^{2}/m\right)^{2}}{\frac{\left(s_{x}^{2}/n\right)^{2}}{n-1} + \frac{\left(s_{y}^{2}/m\right)^{2}}{m-1}} \qquad S_{x} \supset S_{x}^{2}$$

$$\downarrow \text{Use test statistic} \qquad f(y - f(x) \in C_{x}, y)$$

$$t_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_{x}^{2}}{n} + \frac{s_{y}^{2}}{m}}} \sim t_{d} e$$

and df to compute p-value

**Assumptions:** requires the difference in sample means  $\bar{x} - \bar{y}$  to come from Normal distribution

x<sub>i</sub> and y<sub>i</sub> came from normal distribution

ightharpoonup Both n > 30 and m > 30 (CLT)

**Means**: compares the population means of  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_m$ .

- Perform statistical test on the probabilities  $H_0: \mu_x = \mu_y$  vs.  $H_a: \mu_x \neq \mu_y$
- ▶ Use "pooling" to approximate variance by

$$6x^2 = 6y^2 \le s^2 \approx \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}$$

Use test statistic

$$t_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{s^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}$$

and df = n + m - 2 to compute p-value

**Additional assumption:** population variances are equal  $\sigma_x = \sigma_y$ 

## Two categorical variables

Titanic data set provides information on the fate of 891 passengers on the fatal maiden voyage of the ocean liner "Titanic", summarized according to economic status (class), sex, age and survival.

| PassengerId | Sex    | Age | Class | Survived |
|-------------|--------|-----|-------|----------|
| 1           | male   | 22  | 3     | no       |
| 2           | female | 38  | 1     | yes      |
| 3           | female | 26  | 3     | yes      |
| 4           | female | 35  | 1     | yes      |
| 5           | male   | 35  | 3     | no       |
| 6           | male   | NA  | 3     | no       |
| 7           | male   | 54  | 1     | no       |
| 8           | male   | 2   | 3     | no       |
| 9           | female | 27  | 3     | yes      |
| 10          | female | 14  | 2     | yes      |
| 11          | female | 4   | 3     | yes      |
| 12          | female | 58  | 1     | yes      |

## Two categorical variables

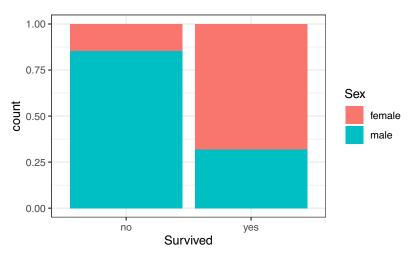
Is it true that women survived more often that men?

|        | no  | yes | Sum |
|--------|-----|-----|-----|
| female | 81  | 233 | 314 |
| male   | 468 | 109 | 577 |
| Sum    | 549 | 342 | 891 |
|        |     |     |     |

- ▶ Marginal distribution is the distribution of only one variable
- ► Conditional distribution is the distribution of one variable within a fixed value of a second value

## Two categorical variables

Two variables are **independent** if conditional distribution of one variable is the same for all values of the other variable



**Step 1**: state your **null** hypothesis and the **alternative** hypothesis.

 $H_0$ : sex and survived variables are independent

 $H_a$ : sex and survived variables are dependent

How would the table look like if null is true?

In o yes Sum

female 81 233 314

male 468 109 577

Sum 549 342 891

Multiply Both Sides by fg/

If sex and survived variables are independent then (Ho)

$$P(no \cap female) = P(no) \cdot P(female) = \frac{549}{891} \cdot \frac{219}{891}$$

$$P(no \cap male) = P(no) \cdot P(male) = \frac{543}{891} \cdot \frac{579}{891}$$

$$P(yes \cap female) = P(yes) \cdot P(female) = P(yes \cap male) = P(yes) \cdot P(male) = P(yes \cap male) = P(yes) \cdot P(male) = P(yes \cap male) = P(yes) \cdot P(male) = P(yes) \cdot P(male) = P(yes \cap male) = P(yes) \cdot P(male) = P(yes) \cdot$$

If sex and survived variables are independent then

observed counts = expected counts

$$| f(s)| = | f(s)|$$

108 — #yes and male =  $\frac{\text{#yes} \cdot \text{#male}}{n}$  =  $\frac{342 \cdot 577}{577}$ 

|        | no  | yes | Sum |
|--------|-----|-----|-----|
| female | 81  | 233 | 314 |
| male   | 468 | 109 | 577 |
| Sum    | 549 | 342 | 891 |

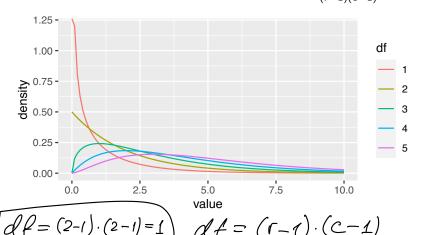
Step 2: summarize the data into a test statistic.

$$x_{obs}^{2} = \sum \frac{(observed - expected)^{2}}{expected} =$$

$$= \frac{(81 - *)^{2}}{*} + \frac{(468 - ...)^{2}}{+} + \frac{(233 - ...)^{2}}{221} + \frac{(103 - 221)^{2}}{221} = 263$$

tops, T~tn~

Note that under the null, the test statistic  $X^2 \sim \chi^2_{(r-1)(c-1)}$ . Af a



```
263
Step 3: compute p-value = P(X^2 > x_{obs}^2) using the chi-square
distribution table with df = (2-1)(2-1).
Step 4: draw the conclusion. p-value < 0.05 =) reject to
chisq.test(x = sex, y = survived, correct = FALSE)
##
    Pearson's Chi-squared test
##
##
## data: sex and survived
## X-squared = 263.05, df = 1, p-value < 2.2e-16
```

#### Exercise

Perform statistical testing to check if there is association between Class and Survived variables.

|     |     |            |                                    | af-(21)/21                                                     |
|-----|-----|------------|------------------------------------|----------------------------------------------------------------|
|     | no  | yes        | Sum                                | df = (3-1)(2-1)                                                |
| 1   | 80  | 136        | 216                                |                                                                |
| 2   | 97  | 87         | 184                                |                                                                |
| 3   | 372 | 119        | ₹491                               |                                                                |
| Sum | 549 | 342        | 891                                |                                                                |
|     |     |            |                                    | Expected<br>216.549/891 2133<br>216-242/891 283                |
|     | X   | 2<br>06S = | (80-13 <u>3</u><br>13 <del>3</del> | $\frac{3}{3}^{2} + \left(\frac{136-83}{83}\right)^{2} + \dots$ |

#### Exercise

```
chisq.test(x = class, y = survived, correct = FALSE)

##
## Pearson's Chi-squared test
##
## data: class and survived
## X-squared = 102.89, df = 2, p-value < 2.2e-16</pre>
```

## Two quantitative variables

In Pearson's data set there are 1078 measurements of a father's height and his son's height.

| fheight  | sheight  |
|----------|----------|
| 65.04851 | 59.77827 |
| 63.25094 | 63.21404 |
| 64.95532 | 63.34242 |
| 65.75250 | 62.79238 |
| 61.13723 | 64.28113 |
| 63.02254 | 64.24221 |
| 65.37053 | 64.08231 |
| 64.72398 | 63.99574 |
| 66.06509 | 64.61338 |
| 66.96738 | 63.97944 |
| 59.00800 | 65.24451 |
| 62.93203 | 65.35102 |
| 63.67063 | 65.67992 |
| 64.07386 | 65.43664 |

## Two quantitative variables

To quantify the relationship between quantitative  $x_1, ..., x_n$  and  $y_1, ..., y_n$  we introduced **correlation coefficient.** 

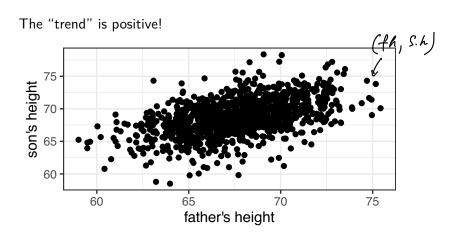
$$correlation = \frac{cov_{xy}}{s_{x} \cdot s_{y}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}} = r_{xy}$$

- Correlation value is between -1 and 1
- Positive correlation ⇒ the variables tend to both increase together
- ightharpoonup Negative correlation  $\Rightarrow$  one variable tends to increase when the other decreases

```
cor(fheight, sheight)
```

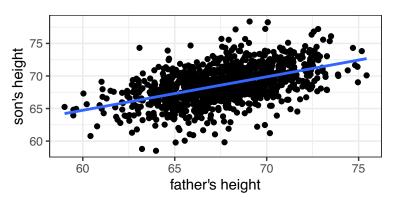
```
## [1] 0.5013383
```

## Two quantitative variables



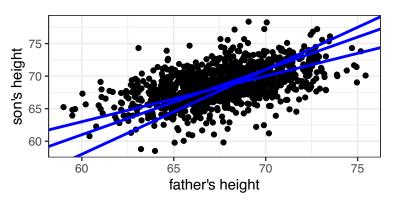
## Linear regression

**Goal**: find the line that approximates the best the relationship between two variables.



## Linear regression

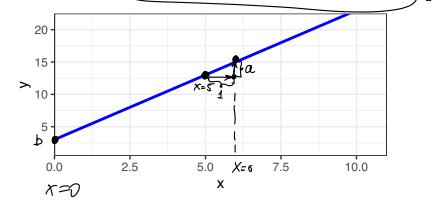
#### Which line is better?



## Line equation

Any line can be written as y = ax + b.

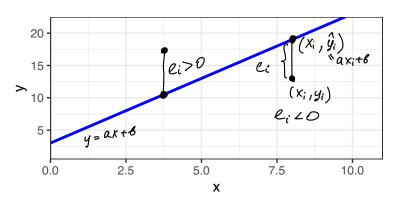
- ► a is **slope** the value of y when x = 0  $y = a \cdot 0 + b = b$
- $\blacktriangleright$  b is **intercept**, the change in y when x changes by 1 unit



## Linear regression

Given a point  $(x_i, y_i)$ 

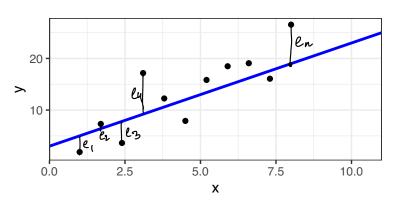
- ightharpoonup vertical projection of the point on the line is  $\hat{y}_i = ax_i + b$
- ▶ **residual**  $e_i = y_i \hat{y}_i$  measures how well the line approximates the point



## Linear regression

Given a set of points  $(x_1, y_1), \ldots, (x_n, y_n)$ 

▶ residual sum of squares  $RSS = \sum_{i=1}^{n} e_i^2$ , measures how well the line approximates the data



Linear regression 
$$\sum_{i=1}^{n} y_i - a \cdot \sum_{j=1}^{n} x_i - h \cdot \theta = 0 = \sum_{j=1}^{n} -a \cdot \sum_$$

Note that for different a and b we will get different RSS

$$y_{i} = \alpha x_{i} + \theta \qquad RSS(a, b) = \sum_{i=1}^{n} (y_{i} - ax_{i} - b)^{2} \longrightarrow \underbrace{min \ \omega.r.}^{t},$$

$$RSS = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

so we want to find a and b that minimize RSS.

$$a = \frac{cov_{xy}}{s_x^2} = \frac{s_y}{s_x} I_{xy}$$

$$b = \bar{y} - a\bar{x}$$

$$dRSS(a, b) = 0$$

$$dRSS(a, b) = 0$$

$$dRSS(a, b) = 0$$

$$= -2 \sum_{z=1}^{|\bar{y}|} (y_i - ax_i - b) = 0$$

$$= -2 \sum_{z=1}^{|\bar{y}|} (y_i - ax_i - b) = 0$$

$$= -2 \sum_{z=1}^{|\bar{y}|} (y_i - ax_i - b) = 0$$

#### Exercise

Find the regression line for Fisher's data set.

$$c(\text{mean(fheight)}, \text{ sd(fheight)}) \qquad Som = Q \cdot \text{father} + B$$

$$y = X$$

$$= \frac{2 \cdot P}{2 \cdot 7} \cdot 0.5 \Rightarrow 0.5$$

$$c(\text{mean(sheight)}, \text{ sd(sheight)}) \qquad = 33$$

$$\# [1] 68.684070 \quad 2.814702$$

$$cor(\text{fheight}, \text{ sheight}) \qquad a = \frac{cov_{xy}}{s_x^2} = \frac{s_y}{s_x} r_{xy} = \frac{$$

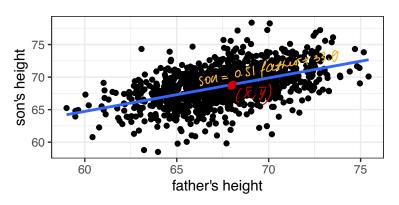
## [1] 0.5013383

### Exercise

```
lm(sheight~fheight)
##
## Call:
  lm(formula = sheight ~ fheight)
##
  Coefficients:
## (Intercept)
                  fheight
      33.8866
                   0.5141
##
    Sou = 0.57. father+33.9
```

## Linear regression: properties

The line passes through  $(\bar{x}, \bar{y})$ 



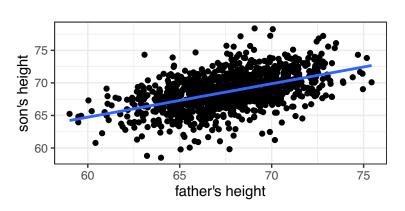
Linear regression: properties

It is important which variable is x which is y.

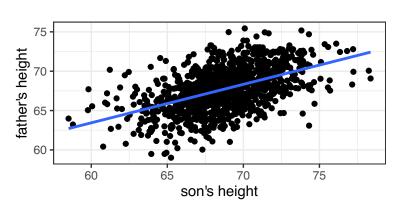
In line equation  $y = a \cdot x + b$ 

- y is called **response variable**
- ► x is called **explanatory variable**

 $son = 0.51 \cdot father + 33.89$ 



 $father = 0.49 \cdot son + 34.11$ 

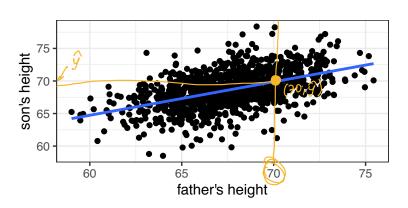


Regression line is often used for prediction,  $\hat{y}$  is often called predicted value.

What would be the son's height if father was 70 inch exactly?

$$\int_{\text{son}} \frac{70}{9} = \alpha \cdot K_{\text{new}} + 6$$

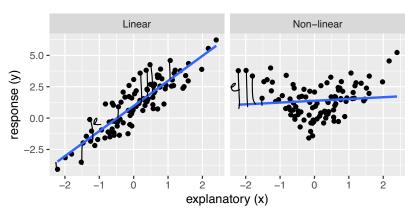
$$\hat{S} = \alpha \cdot K_{\text{new}} + 6$$



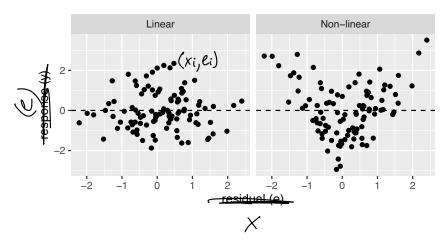
# Regression coefficients have interpretation

- ▶  $\not$  is the average value of y when x = 0 (if zero values make sense)
- $\blacktriangleright$  **b** is the average change in y when x changes by 1 unit

Regression works great when the "trend" is linear.

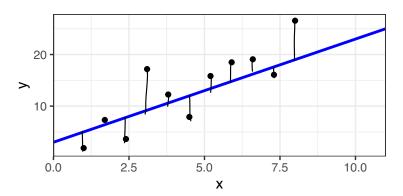


The **residual plot** will show whether a straight line is a good model for the data.

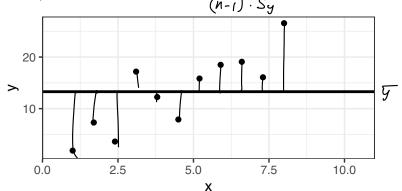


How to measure if line approximation is accurate?

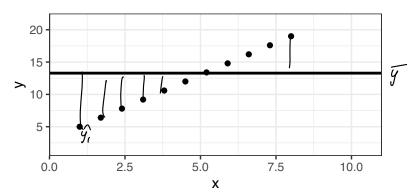
**Residual sum of squares**  $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$  measures how well the regression line approximates the data. BUT RSS dependents on the data scale.



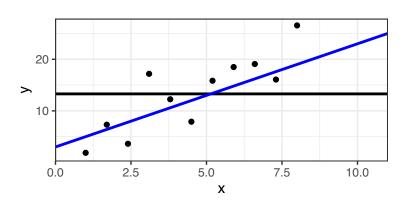
**Total sum of squares**  $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$  measures variation in the response variable.



**Explained sum of squares**  $ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$  measures variation in the response variable that can be explained by the regression line.



$$TSS = ESS + RSS$$



**Coefficient of determination** measures the **proportion** of variation in response variable explained by the regression line.

$$R^2 = \sqrt{\frac{ESS}{TSS}} = 1 - \frac{RSS}{TSS}$$

- $ightharpoonup R^2 = 0$  none of the variation is explained (very bad fit)
- $ightharpoonup R^2 = 1$  all of the variation is explained (perfect fit)

**Cool fact**: coefficient of determination is equal to the squared correlation between the response and explanatory variable (and prediction)

$$R^2 = cor^2(x, y) = cor^2(\hat{y}, y)$$

#### Exercise

Given RSS

sum((lm(sheight~fheight)\$residuals)^2) 
$$TSS = Z(y, -\bar{y})^2$$
## [1] 6388.001
$$S_y^2 = \int_{N-1}^{\infty} Z(y, -\bar{y})^2$$
standard deviation of sons height
$$Sd(\text{sheight})$$
## [1] 2.814702 =  $S_y$ 

$$TSS = (N-1)S_y$$

$$R = 0.25$$
and  $N = 1078$ , find the coefficient of determination.
$$R = 1078$$

$$R = (-6388)$$

#### TO DO

- 1. Module 11. Simple Linear Regression
- 2. Quiz 12 due Monday (April 10) @ 11:59 PM (EST)
- 3. Practice Problem Set 12