STA220H1: The Practice of Statistics I

Elena Tuzhilina

March 28, 2023

Please turn on your videos :)

- 1. We have two Quizzes left before the final exam.
- 2. The Midterm 2 grades will be released in a couple of days, you will have one week to submit your regrade request (we will use email again).
- 3. Final exam is on April 20 at 3-5 pm in MY.
- 4. We will hold additional office hours before the final exam.

Agenda for today

- Recap: testing and connection to confidence intervals, power, type I and II error
- Statistical testing for two samples: matching and non-matching pairs

Statistical testing and confidence intervals

There is a connection between statistical testing and CI.

$$CI = \left[\bar{x} - t_{n-1}^{\alpha/2} \cdot \frac{s}{\sqrt{n}}, \ \bar{x} + t_{n-1}^{\alpha/2} \cdot \frac{s}{\sqrt{n}}\right]$$

- If CI does not cover μ₀, then we can reject H₀ : μ = μ₀ in favor of H_a : μ ≠ μ₀ at significance level α
- If CI covers μ₀, we do not have enough evidence to reject H₀ at significance level α

Example

If 90% confidence interval is [2, 10] what can we say about the hypotheses $H_0: \mu = 0$ vs. $H_a: \mu \neq 0$?

If 90% confidence interval is [2, 10] what can we say about the hypotheses $H_0: \mu = 5$ vs. $H_a: \mu \neq 5$?

Two-sided confidence interval

Two-sided confidence interval is [a, b] that covers μ . Standardization:

$$rac{ar{X}-\mu}{S/\sqrt{n}}$$
 approximately $\sim t_{n-1}$

Distribution table:

$$P\left(-t_{n-1}^{\alpha/2} \leq \frac{\bar{X}-\mu}{S/\sqrt{n}} \leq t_{n-1}^{\alpha/2}\right) = 1-\alpha$$

With probability 1-lpha, the population parameter μ belongs to

$$\left[\bar{X} - t_{n-1}^{\alpha/2} \frac{S}{\sqrt{n}}, \ \bar{X} + t_{n-1}^{\alpha/2} \frac{S}{\sqrt{n}}\right]$$

One-sided confidence interval

Upper one-sided confidence interval is $[a, +\infty)$ that covers μ . Standardization:

$$rac{ar{X}-\mu}{S/\sqrt{n}}$$
 approximately $\sim t_{n-1}$

Distribution table:

$$P\left(\frac{\bar{X}-\mu}{S/\sqrt{n}} \le t_{n-1}^{\alpha}\right) = 1-\alpha$$

With probability 1-lpha, the population parameter μ belongs to

$$\left[\bar{X}-t_{n-1}^{\alpha}\frac{S}{\sqrt{n}}, +\infty\right)$$

One-sided confidence interval

Lower one-sided confidence interval is $(-\infty, a]$ that covers μ . Standardization:

$$rac{ar{X}-\mu}{S/\sqrt{n}}$$
 approximately $\sim t_{n-1}$

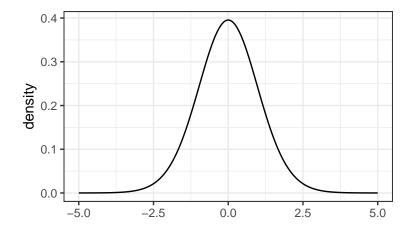
Distribution table:

$$P\left(\frac{\bar{X}-\mu}{S/\sqrt{n}}\geq -t_{n-1}^{\alpha}
ight)=1-lpha$$

With probability 1-lpha, the population parameter μ belongs to

$$\left(-\infty, \ \bar{X} + t_{n-1}^{\alpha} \frac{S}{\sqrt{n}}\right]$$

One-sided vs two-sided quantiles



One-sided confidence intervals

To find one-sided confidence interval

What if σ^2 was known?

Statistical testing and confidence intervals

There is a connection between one-sided statistical testing and one-sided CI.

$$CI = \left[\bar{x} - t_{n-1}^{\alpha} \frac{s}{\sqrt{n}}, +\infty\right)$$

If CI does not cover μ₀, then we can reject H₀ : μ = μ₀ in favor of H_a : μ > μ₀ at significance level α

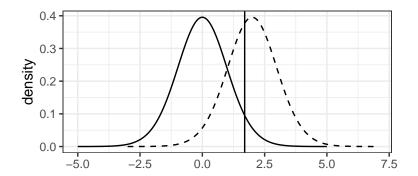
$$CI = \left(-\infty, \ \bar{x} + t^{\alpha}_{n-1} \frac{s}{\sqrt{n}}\right]$$

If CI does not cover μ₀, then we can reject H₀ : μ = μ₀ in favor of H_a : μ < μ₀ at significance level α

Statistical testing: Type I type II errors and power

Type I error: we rejected H_0 when H_0 was true.

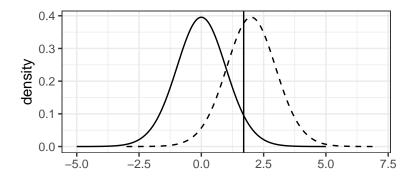
 $\alpha = P(reject H_0 | H_0 \text{ is true})$



Statistical testing: Type I type II errors and power

Type II error: we failed to reject H_0 when H_a was true.

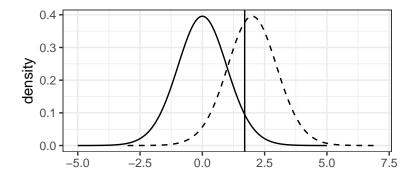
 $\beta = P(fail to reject H_0|H_a is true)$



Statistical testing: Type I type II errors and power

Power: chances to correctly reject H_0 when H_a is true.

$$1 - \beta = P(reject H_0|H_a is true)$$



Paired t-test: compare two samples x_1, \ldots, x_n and y_1, \ldots, y_n with **matching observations**.

Create a sample that shows the difference in measurements:

$$d_1,\ldots,d_n$$
 where $d_i = x_i - y_i$

Perform statistical test on differences testing H₀ : µ_d = 0 vs H_a : µ_d ≠ 0.

Example

30 chickens were fed with sunflower seeds for 1 month. Their weight gain (in gramms) was recorded.

The same chickens were fed with corn for 1 month. The new weight gain was recorded.

Is any diet better for the weight gain?

chicken	diet1	diet2	difference
1	248.4738	229.5219	18.95187
2	213.6821	272.2564	-58.57428
3	285.9187	227.6527	58.26604
4	160.2935	310.4249	-150.13137
5	140.8080	219.8894	-79.08139
6	249.5029	201.6018	47.90115

To test $H_0: \mu_d = 0$ vs $H_a: \mu_d \neq 0$ you need to

• Compute sample mean \overline{d} and sample standard deviations s_d for the differences

• Compute
$$t_{obs} = \frac{\bar{d}}{s_d/\sqrt{n}}$$

Get p-value from the table and interpret the results

This requires normal approximation!

Then for differences $D_i = X_i - Y_i$, t-test requires that

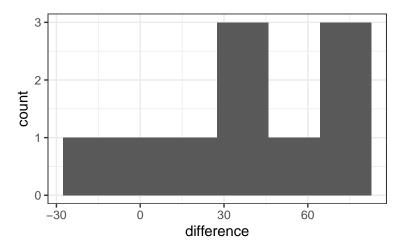
 $\bar{D} \sim \textit{Normal}(\mu_d, \sigma_d^2)$

which is true when

- n is large (CLT)
- D_i are normal

Can we compare matching samples if n is small and differences are not normal?

Assume we collected the data only for 10 chickens.



Let's look at the **sign of the differences**.

chicken	diet1	diet2	difference	sign
1	183.8958	158.2390	25.656797	1
2	193.4912	157.0623	36.428881	1
3	211.5568	177.4809	34.075889	1
4	241.7387	165.3641	76.374552	1
5	178.1514	180.7937	-2.642283	-1
6	240.8551	169.9080	70.947102	1
7	245.0208	178.7047	66.316034	1
8	219.4718	189.6762	29.795558	1
9	216.6203	165.2014	51.418857	1
10	165.5608	181.0978	-15.537045	-1

Signed test compares how often the difference is positive (or negative).

▶ New random variable $S_i = 1$ if $D_i \ge 0$ and $S_i = 0$ if $D_i < 0$

• Then
$$S_1, \ldots, S_n \sim Bernoulli(p)$$

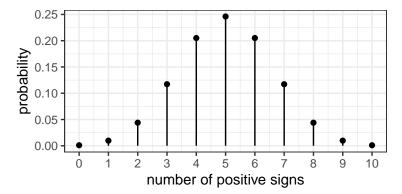
• If
$$\mu_d = 0$$
 then $p = 0.5$

Signed test tests the hypotheses $H_0: p = 0.5$ vs $H_a: p \neq 0.5$

- ► The observed statistic is N = ∑ⁿ_{i=1} S_i, i.e. the number of positive signs
- The null distribution is $N \sim Bernoulli(n, 0.5)$

We observe 8/10 positive differences.

```
p-value = P(N \ge 8) + P(N \le 2)
```



Non-matching samples: proportions

50 patients received Moderna vaccine. The hospital recorded if they got COVID during the following 6 months.

[1] 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

Other 30 patients received Pfizer vaccine and were monitored during the following 6 months

[1] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

Can we say if any vaccine is more efficient against COVID?

Non-matching samples: proportions

Let's compare the proportions of patients that got COVID.

table(moderna)

moderna

0 1 ## 42 8

table(pfizer)

pfizer ## 0 1 ## 26 4

Non-matching samples: proportions

We are given two samples x_1, \ldots, x_n and y_1, \ldots, y_m with **non-matching observations**.

- X₁,..., X_n ~ Bernoulli(p) is the outcome for each Moderna recipient
- Y₁,..., Y_m ~ Bernoulli(q) is the outcome for each Pfizer recipient

From CLT and properties of normal distribution

$$ar{X} - ar{Y}$$
 approximately $\sim N\left(p-q, rac{p(1-p)}{n} + rac{q(1-q)}{m}
ight)$

Non-matching samples: confidence intervals for proportions

Standardization:

$$Z = rac{(ar{X} - ar{Y}) - (p - q)}{\sqrt{rac{p(1-p)}{n} + rac{q(1-q)}{m}}}$$
 approximately $\sim N\left(0,1
ight)$

With probability $1 - \alpha$ the difference is p - q in

$$(ar{X}-ar{Y})\pm z^{lpha/2}\cdot\sqrt{rac{p(1-p)}{n}+rac{q(1-q)}{m}}$$

Confidence interval for p - q:

$$(ar{x}-ar{y})\pm z^{lpha/2}\cdot\sqrt{rac{ar{x}(1-ar{x})}{n}+rac{ar{y}(1-ar{y})}{m}}$$

Find 95% confidence interval for p - q in the vaccine example.

Do we observe significant difference in x_1, \ldots, x_n and y_1, \ldots, y_m ? Ultimate goal: test hypotheses $H_0: p = q$ vs. $H_a: p \neq q$

Test hypotheses $H_0: p = q$ vs. $H_a: p \neq q$

Test statistic is constructed under the null hypothesis

Need to use both x and y samples to find a common estimate for p and q

Idea: "pool" two samples into $x_1, \ldots, x_n, y_1, \ldots, y_m$ and approximate both by $p, q \approx \frac{n\bar{x}+m\bar{y}}{n+m}$

To test hypotheses $H_0: p = q$ vs. $H_a: p \neq q$ use test statistic

$$z_{obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{n\bar{x} + m\bar{y}}{n+m} \left(1 - \frac{n\bar{x} + m\bar{y}}{n+m}\right) \left(\frac{1}{n} + \frac{1}{m}\right)}}$$

Then, use normal table to find p-value and draw the conclusion...

Exercise

Use statistical testing to check if there is a difference between Prizer and Moderna vaccines. What will change if we want to check that Pfizer has higher success rate than Moderna?

A normal pregnancy can range from 38 to 42 weeks.

50 pregnant patients got COVID in the first trimester. The hospital recorded the gestational age of each born baby (in weeks).

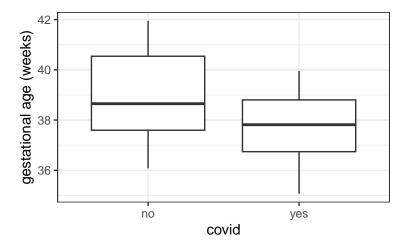
[1] 36.3 36.9 37.9 39.5 36.0 39.5

Other 30 pregnant patients did not get COVID in the first trimester.

[1] 37.6 38.2 39.4 41.4 37.2 41.4

Does COVID lead to a preterm birth?

Let's also compare the boxplots.



Does COVID lead to a preterm birth?

From CLT and properties of normal distribution

$$ar{X} - ar{Y}$$
 approximately $\sim N\left(\mu_x - \mu_y, rac{\sigma_x^2}{n} + rac{\sigma_y^2}{m}
ight)$

Standardization:

$$rac{(ar{X}-ar{Y})-(\mu_x-\mu_y)}{\sqrt{rac{\sigma_x^2}{n}+rac{\sigma_y^2}{m}}}$$
 approximately $\sim N(0,1)$

But, we do not know σ_x and σ_y

$$T = rac{(ar{X} - ar{Y}) - (\mu_x - \mu_y)}{\sqrt{rac{S_x^2}{n} + rac{S_y^2}{m}}}$$
 approximately $\sim t_{df}$

With probability $1-\alpha$ the difference is $\mu_{\rm x}-\mu_{\rm y}$ in

$$(\bar{X}-\bar{Y})\pm t_{df}^{lpha/2}\cdot\sqrt{rac{S_x^2}{n}+rac{S_y^2}{m}}$$

Non-matching samples: confidence intervals for means

Confidence interval for $\mu_x - \mu_y$:

$$(\bar{x}-\bar{y})\pm t_{df}^{lpha/2}\cdot\sqrt{rac{s_x^2}{n}+rac{s_y^2}{m}}$$

Well, this is not the end of the story! You need to estimate df...:(

Non-matching samples: confidence intervals for means

Confidence interval for $\mu_x - \mu_y$:

$$(ar{x}-ar{y})\pm t_{df}^{lpha/2}\cdot\sqrt{rac{s_x^2}{n}+rac{s_y^2}{m}}$$

"Pooled" degrees of freedom are estimated as

$$df = \frac{\left(s_x^2/n + s_y^2/m\right)^2}{\frac{\left(s_x^2/n\right)^2}{n-1} + \frac{\left(s_y^2/m\right)^2}{m-1}}$$

Exercise

Find *df* for the pregnancy data example.

sd(nocovid)

[1] 1.77168

sd(covid)

[1] 1.361195

Find 95 confidence interval for $\mu_x - \mu_y$.

mean(nocovid)

[1] 39.05731

mean(covid)

[1] 37.66296

Do we observe significant difference in x_1, \ldots, x_n and y_1, \ldots, y_m ? To test hypotheses $H_0: \mu_x = \mu_y$ vs. $H_a: \mu_x \neq \mu_y$

Use test statistic

$$t_{obs} = rac{ar{x} - ar{y}}{\sqrt{rac{s_x^2}{n} + rac{s_y^2}{m}}}$$

- Compute *df* from the ugly formula
- Compute p-value from the t-distribution table

Exercise

Use statistical testing to check if there is a difference in gestational ages of babies for COVID and non-COVID patients. What will change if we want to check that COVID leads to a premature birth?

Exercise

```
##
##
   Welch Two Sample t-test
##
## data: covid and nocovid
## t = -3.7043, df = 49.505, p-value = 0.0005341
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -2.1505816 -0.6381185
## sample estimates:
## mean of x mean of y
## 37.66296 39.05731
```

Can we simplify computations for statistical testing by "pooling" the samples?

Yes, but only if $\sigma_x = \sigma_y$.

Idea: "pool" two samples into $x_1, \ldots, x_n, y_1, \ldots, y_m$ and approximate s_x^2, s_y^2 by

$$s^2 pprox rac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}$$

Then

$$t_{obs} = rac{ar{x} - ar{y}}{\sqrt{s^2 \left(rac{1}{n} + rac{1}{m}
ight)}}$$

with df = n + m - 2.

Assuming that variances for two samples are equal, use statistical testing to check if there is a difference in gestational ages of babies for COVID and non-COVID patients.

Exercise

```
##
##
   Two Sample t-test
##
## data: covid and nocovid
## t = -3.9546, df = 78, p-value = 0.0001676
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -2.0963005 -0.6923995
## sample estimates:
## mean of x mean of y
## 37.66296 39.05731
```

TO DO

- 1. Module 10. Comparing Two Groups
- 2. Quiz 11 due Monday (April 3) @ 11:59 PM (EST)
- 3. Practice Problem Set 11