STA220H1: The Practice of Statistics I

Elena Tuzhilina

March 21, 2023

Please turn on your videos :)

Announcements

- 1. Midterm 2 solution is posted.
- 2. The grades will be released next week.
- 3. We have three more lectures!

Agenda for today

- ▶ Recap: statistical testing, H_0 and H_a , process, p-value
- More on statistical testing: power, type I and II error, connection to confidence intervals
- Statistical testing for two samples

Statistical tests use data to answer questions about the population.

We want to study the average height in Canada.

We take a sample of n people, record their heights and compute the sample mean and standard deviations:

$$x_1,\ldots,x_n\Rightarrow \bar{x},s$$

How to use this information to check if the average height is equal to some pre-specified value?

Step 1: state your **null** hypothesis and the **alternative** hypothesis. $H_0: \mu = \mu_0$

$$H_{\mathsf{a}}: \mu > \mu_0$$
 or $H_{\mathsf{a}}: \mu < \mu_0$ or $H_{\mathsf{a}}: \mu \neq \mu_0$

Step 2: summarize the data into a test statistic.

$$t_{obs} = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Step 3: compute p-value.

p-value = $P(T > t_{obs})$ or $P(T < t_{obs})$ or $P(|T| > |t_{obs}|)$

Step 4: draw the conclusion.

If *p*-value $< \alpha$, thus we can reject H_0 in favor of H_a .

Else, we "do not have enough evidence to reject the null."

Is the average height in Canada is 175 cm?

sample = rnorm(n = 30, mean = 175, sd = 20)

mean(sample)

[1] 179.5734

sd(sample)

[1] 23.47429

Step 1: H_0 : $\mu = 175$ and H_a : $\mu \neq 175$ **Step 2**: $t_{obs} = 1.0671$ **Step 3**: p-value = $P(|T| > |t_{obs}|) = 0.2947$ **Step 4**: p-value > 0.05, thus we cannot reject H_0

```
t.test(sample, mu = 175, alternative = "two.sided")
```

```
##
   One Sample t-test
##
##
## data: sample
## t = 1.0671, df = 29, p-value = 0.2947
## alternative hypothesis: true mean is not equal to 175
## 95 percent confidence interval:
## 170.8080 188.3389
## sample estimates:
## mean of x
## 179.5734
```

Statistical testing can only check if H_0 is incorrect

• *p*-value > α does not mean that we can accept H_0

Is the average height in Canada is 175.5 cm? **Step 1**: H_0 : $\mu = 175.5$ and H_a : $\mu \neq 175.5$ **Step 2**: $t_{obs} = 0.95045$ **Step 3**: p-value = $P(|T| > |t_{obs}|) = 0.3497$ **Step 4**: p-value > 0.05, thus we cannot reject H_0

```
t.test(sample, mu = 175.5, alternative = "two.sided")
```

```
##
   One Sample t-test
##
##
## data: sample
## t = 0.95045, df = 29, p-value = 0.3497
## alternative hypothesis: true mean is not equal to 175.5
## 95 percent confidence interval:
## 170.8080 188.3389
## sample estimates:
## mean of x
## 179.5734
```

P-value measures how likely the observed data would be if $\ensuremath{\mathcal{H}}_0$ is true.

- t_{obs} is computed under the assumption that H_0 is true
- *p*-value quantifies how strong is the evidence against H_0

What is the meaning of significance level $\alpha = 0.05$?

What is the meaning of significance lev	<i>el</i> $\alpha = 0.05$?
---	-----------------------------

sample	tobs	pvalue
1	0.1315220	0.8962706
2	0.4887261	0.6287113
3	1.0671139	0.2947238
4	-1.5760942	0.1258517
5	3.3038490	0.0025415
6	0.0624155	0.9506601
7	0.9570186	0.3464687
8	1.9237988	0.0642451
9	-0.4967206	0.6231308
10	0.3175223	0.7531223

What is the meaning of significance level $\alpha = 0.05$?

- Different samples produce different test statistics (and conclusions)
- If the null hypothesis is true, we will incorrectly reject null 5% times

Statistical testing: type I error

Type I error: we rejected H_0 when H_0 was true.

- \blacktriangleright This happens with probability α
- \blacktriangleright By selecting smaller α we decrease the chance of type I error

What if we make α very small?

• We will never reject H_0 , even if H_a was true

What happens if H_a is true?

sample = rnorm(n = 30, mean = 180, sd = 20)

sample	tobs	pvalue
1	1.6294412	0.1140357
2	1.9704657	0.0583987
3	2.2337574	0.0333752
4	0.1134225	0.9104772
5	4.9992181	0.0000254
6	1.4434491	0.1596104
7	2.1564185	0.0394791
8	3.1393408	0.0038726
9	0.7394223	0.4655943
10	1.6371530	0.1124061

What happens if H_a is true?

The **power** of the test is the probability of correctly rejecting H_0 when the alternative is true.

- Smaller α means higher power
- Power is high if true µ is far from the value that we consider in H₀
- Larger n implies higher power

Statistical testing: type II error

Type II error: we failed to reject H_0 when H_a was true.

• Type II error is usually denoted by β

$$\beta = 1 - power$$

Small α implies large β

Statistical testing: type I and II errors

 $\alpha = P(reject \ H_0|H_0 \ is \ true)$ $\beta = P(fail \ to \ reject \ H_0|H_a \ is \ true)$

- H_0 : patient doesn't have disease
- H_a : patient does have disease

Are these type I, type II errors or power?

- Test detected the disease but the patient is not sick
- Test detected the disease and the patient is sick
- Test did not detect the disease and the patient is sick

Statistical testing: additional discuttion

For more information watch some general advice about statistical tests video.

We want to study the average life expectancy in Canada μ . We take a sample of *n* people, record their ages of death and compute the sample mean and standard deviation:

$$x_1,\ldots,x_n\Rightarrow \bar{x},s$$

Suppose we tested two-sided hypothesis $H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0$ and *p*-value < 0.05.

If a is a quantile that corresponds to 2.5% tail of t-distribution then

$$rac{ar{x}-\mu_0}{s/\sqrt{n}}>a$$
 or $rac{ar{x}-\mu_0}{s/\sqrt{n}}<-a$

This is equivalent to

$$\mu_0 < \bar{x} - a \cdot \frac{s}{\sqrt{n}}$$
 or $\mu_0 > \bar{x} + a \cdot \frac{s}{\sqrt{n}}$

Recall that 95% confidence interval is

$$\left[\bar{x} - a \cdot \frac{s}{\sqrt{n}}, \bar{x} + a \cdot \frac{s}{\sqrt{n}}\right]$$

Thus CI does not cover $\mu_0!$

There is a connection between statistical testing and CI.

- If 95% CI does not cover μ₀, then we can reject H₀ : μ = μ₀ in favor of H_a : μ ≠ μ₀
- ▶ If 95% CI covers μ_0 , we do not have enough evidence to reject H_0 .

We want to test if the average life expectancy in Canada is exactly 75. We collect a sample of size 30.

mean(ages)

[1] 78.82458

sd(ages)

[1] 9.241208

Find 95% confidence interval. Does it cover 75? What conclusion can we make?

```
##
##
   One Sample t-test
##
## data: ages
## t = 2.2668, df = 29, p-value = 0.03104
## alternative hypothesis: true mean is not equal to 75
## 95 percent confidence interval:
## 75.37386 82.27531
## sample estimates:
## mean of x
## 78.82458
```

We want to test if the average life expectancy in Canada is exactly 75. We collect a sample of size 30.

mean(ages)

[1] 78.82458

sd(ages)

[1] 9.241208

Now find 99% confidence interval. Does it cover 75? What conclusion can we make?

```
##
##
   One Sample t-test
##
## data: ages
## t = 2.2668, df = 29, p-value = 0.03104
## alternative hypothesis: true mean is not equal to 75
## 99 percent confidence interval:
## 74.17399 83.47517
## sample estimates:
## mean of x
## 78.82458
```

30 chickens were fed with sunflower seeds for 1 month. Their weight gain (in gramms) was recorded.

[1] 267.9340 194.8606 219.3836 197.3097 131.1470

The same chickens were fed with corn for 1 month. The new weight gain was recorded.

[1] 300.0809 178.0380 214.4870 181.4001 142.8363

Is any diet better for the weight gain?

Let's first check the summary statistics.

mean(gain1)

[1] 206.6387

sd(gain1)

[1] 39.76608

mean(gain2)

[1] 185.5139

sd(gain2)

[1] 48.01734

Let's also compare the boxplots.

How to check if this difference is statistically significant?

We are given two samples x_1, \ldots, x_n and y_1, \ldots, y_n with **matching** observations.

Do we observe significant difference in x_1, \ldots, x_n and y_1, \ldots, y_n ?

We create a sample that shows the difference in measurements:

$$d_1,\ldots,d_n$$
 where $d_i = x_i - y_i$

We perform statistical test on differences testing H₀ : µ_d = 0 vs H_a : µ_d ≠ 0.

-

ls	any	diet	better	for	the	weight	gain?
----	-----	------	--------	-----	-----	--------	-------

chicken	diet1	diet2	difference
1	267.9340	300.08089	-32.146910
2	194.8606	178.03800	16.822614
3	219.3836	214.48697	4.896612
4	197.3097	181.40011	15.909640
5	131.1470	142.83634	-11.689317
6	179.2503	189.43962	-10.189343
7	180.2855	89.75207	90.533434
8	197.0343	253.27774	-56.243413
9	255.0013	187.66267	67.338602
10	238.1588	288.63058	-50.471796

Find tobs and p-value.

diff = gain1 - gain2
mean(diff)

[1] 21.12483

sd(diff)

[1] 46.39968

What will change if we want to check if corn is better than sunflower seed for gaining weight?

```
##
## Paired t-test
##
## data: gain1 and gain2
## t = 2.4937, df = 29, p-value = 0.0186
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## 3.798903 38.450752
## sample estimates:
## mean of the differences
##
                  21.12483
```

This procedure is called *paired t-test*

- Paired t-test is suitable only if there is a matching between x₁,..., x_n and y₁,..., y_n samples
- Samples x_1, \ldots, x_n and y_1, \ldots, y_n are **not independent**

Is paired t-test suitable for this analysis?

- Test the difference in heart rates before and after drinking coffee
- Test the difference in COVID-19 death rates between young and old people
- ► Test if protein-based diet will increase your sport performance
- Test if average IQ in Canada is higher than in the US

Confidence intervals for two groups

Given two samples x_1, \ldots, x_n and y_1, \ldots, y_n with **matching observations** you can also find confidence interval for the average difference μ_d .

TO DO

- Module 9. The Effective Use of Statistical Tests and Module 10. Comparing Two Groups
- 2. Quiz 10 due Monday (March 27) @ 11:59 PM (EST)
- 3. Practice Problem Set 10